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Abstract—Battery-free wireless sensor network (including en-
ergy harvesting network and energy rechargeable network) is
a new network architecture that has been proposed in recent
years to solve the lifetime limitation problem of conventional
wireless sensor networks. Battery-free sensor nodes can harvest
energy from environmental energy resources or from artificial
power stations. Thus, the lifetime of a battery-free wireless sensor
network is unlimited in terms of energy. The specific properties
of battery-free wireless sensor networks have brought new
challenges in fundamental issues, such as energy management,
networking and data acquisition, which means the existing algo-
rithms in wireless sensor networks cannot be adopted directly.
The battery-free wireless sensor network can be regarded as a
totally new topic in IoT and has attracted much attention from
researchers. Many algorithms have been proposed to solve the
fundamental problems in battery-free wireless sensor networks.
The objective of this survey is to comprehensively summarize
and analyze the existing works. In this survey, we first introduce
the existing algorithms from three fundamental aspects including
energy management, networking and data acquisition. Then we
present some specific applications of battery-free wireless sensor
networks.

Index Terms—Internet of Things, sensor networks, battery-
free, communication, wireless charging, networking, coverage.

I. INTRODUCTION

Internet of Things (IoT) [1] is an effective paradigm to help
people access the physical world. It acts as a bridge connecting
the physical world and the cyber world. Furthermore, IoT is
an indispensable component for the future 6G network [2].

Wireless Sensor Networks (WSNs) are fundamental build-
ing blocks in many IoT applications. A WSN consists of sensor
nodes which are inexpensive, tiny, powered by batteries, and
networked through wireless communications. A WSN can be
easily deployed into all kinds of environments to collect sen-
sory data from the physical world and provide data processing
services, such as data query [3], data mining [4], data gathering
[5] and so on, to the IoT users. WSNs may be employed
in many IoT applications, such as environment monitoring
[6], battlefield surveillance [7], and industry process control
[8]. In the last decades, WSNs have received tremendous
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attention from both industry and academia. Many researchers
and engineers have made tremendous contributions on the
design of algorithms, protocols, systems and applications for
the development and deployment of WSNs. Modern IoT
systems such as edge/fog computing could also benefit from
the progress of WSNs. Therefore, the influence of WSNs is
profound.

Although WSNs have many advantages, there is still a
barrier which is the battery usage. It causes the following two
primary problems: i) Limited network lifetime. The lifetime
of a sensor node is mainly decided by its battery’s lifetime.
A WSN will be non-functional or even dead when a certain
number of nodes or some key nodes run out of battery.
ii) Environment pollution. Usually, a WSN is deployed in
a natural environment, and exhausted batteries may cause
environment pollution. Such two problems hinder further
development and employment of WSNs. Researchers have
spent much effort to solve the problems. One solution is to
replace batteries [9], which is almost impossible for large
scale networks or inaccessible areas, especially for battlefields
and poisoned regions. Another solution is to design energy-
efficient algorithms [10] to schedule the working periods of
sensor nodes so that network lifetime can be extended to
a maximum extent. Unfortunately, for both solutions, the
resulted network lifetime is still limited.

In order to completely overcome the challenges caused
by battery usage, a new network architecture, Battery-Free
Wireless Sensor Network (BF-WSN), has been proposed. It is
also known as the energy harvesting sensor network or energy
rechargeable sensor network. Thanks to the energy harvesting
capability, a battery-free sensor node can acquire energy from
external resources, such as natural energy (solar energy, wind
energy, etc.) and artificial energy (RF signal energy). Obvi-
ously, natural energy is unlimited. Artificial energy resources,
such as RF power stations and RFID readers, always have
stable energy supplies. Therefore, the lifetime of a BF-WSN
is unlimited in terms of energy. Furthermore, a battery-free
sensor node always uses a super capacitor to store energy,
which is environmentally friendly [11]. For example, in a
wildfire monitoring application, a solar energy powered BF-
WSN can be deployed in a forest to monitor the temperature
of the surrounding environment.

It seems that BF-WSNs can perfectly prevent the problems
emerging in traditional WSNs. Unfortunately, on the other
hand, most of the current algorithms for traditional WSNs
cannot be adopted in BF-WSNs. There are three fundamen-
tal issues in both WSNs and BF-WSNs, which are energy
management, networking and data acquisition. As shown in
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Fig. 1: The structure of this survey.

Fig. 1, energy replenishment resolves the energy supply issue
for sensor nodes, networking protocols enable communications
among sensor nodes, and data acquisition strategies help a
network acquire enough information from the physical world.
The corresponding algorithms for WSNs focus on how to
save energy and prolong network lifetime [5], [12]–[16].
However, in BF-WSNs, energy supply is infinite and the
network lifetime is unlimited in terms of energy. Thus, when
designing algorithms for BF-WSNs, the motivation is changed
from “how to save energy” to “how to use energy efficiently
to improve network performance”. Some surveys [17]–[23]
have introduced the algorithms in BF-WSNs. However, these
surveys only focus on some specific techniques in BF-WSNs,
such as backscatter communication [17], [22], visible light
communication [21], RFID based sensing [18]–[20] and sen-
sorless sensing [23].

In this article, as illustrated in Fig. 1, we provide a com-
prehensive survey for the algorithms in BF-WSNs and the
following issues are covered:

1) Energy Replenishment Scheduling. We introduce the al-
gorithms for charger placement and scheduling.

2) Communication and Networking. We present the works
for broadcasting, data collection, data aggregation, and
routing.

3) Data Acquisition. We elaborate the algorithms for sen-
sorless sensing and data coverage.

4) Applications. We summarize some specific applications,
such as health monitoring, temperature and humidity
sensing, video streaming, object localization, and indus-
trial applications.

The rest of the paper is organized as follows. Section II is
dedicated to energy replenishment scheduling. Communication
and networking algorithms are introduced in Section III.
The data acquisition methods are covered in Section IV. In
Section V, some specific applications are presented. Section
VI concludes the survey.

II. ENERGY REPLENISHMENT SCHEDULING

Since sensor nodes in BF-WSNs do not have batteries,
energy replenishment becomes a fundamental and essential
service to support the continuous operation of a BF-WSN.
To charge sensor nodes which may be deployed in any area
even with obstacles, Wireless Power Transfer (WPT) has
been introduced as a controllable and sustainable way in
BF-WSNs. With this technology, energy can be wirelessly
transferred from chargers to rechargeable nodes such as RFID
tags, sensors, smartphones, and Tesla cars. However, how to
charge nodes efficiently considering different utility objectives,
such as prolonging network lifetime, maximizing charging

efficiency, minimizing energy provisioning cost and charging
latency, etc., emerge as the challenging problems in BF-WSNs,
and have drawn extensive attentions from researchers.

According to the behaviors of chargers, the existing works
for energy replenishment scheduling can be classified into two
classes: stationary charging and mobile charging. In stationary
charging, a set of chargers (i.e. Powercast [24]) is assumed
to be located at a set of fixed points to conduct energy
transferring. While, in mobile charging, a single charger or
a group of chargers is assumed to move around a network to
charge all the rechargeable nodes.

A. Stationary Charging

A stationary charger, such as Powercast [24], can recharge
devices in a fixed direction within a certain distance. In
the stationary charging scenario, generally, there is a set of
rechargeable nodes deployed in a target area, and a single
charger (or a set of charges) which is responsible for charging
these rechargeable nodes and collecting the sampled data from
these nodes at a fixed position (or or a group of positions).
Since the received charging power of each rechargeable node
is related to the distance between it to the chargers, the
orientation of chargers, and the power of chargers, thus, how
to computed the optimal positions, the orientations, and the
power of the chargers, becomes essential for BF-WSNs to
support its continuous operation with minimum cost.

For stationary charging, the existing works mainly fall into
the following two categories: 1) charger deployment, i.e., how
to deploy the chargers to guarantee each rechargeable node
can harvest enough energy; 2) charger scheduling, i.e., how
to schedule the status of chargers (i.e., active/inactive), the
orientations of the chargers, the power of the chargers, etc., to
optimize the system utility.

1) Charger Deployment Algorithms in BF-WSNs: Consid-
ering the number of chargers and their positions, the charger
deployment algorithms in BF-WSNs try to find the minimum
number of chargers or the optimal positions of a given number
of chargers to satisfy different objectives. The overview of
these algorithms is shown in Table 1, and the details of these
works are summarized as follows.

Firstly, the charger deployment problem which tries to
minimize the number of chargers to (fully or partially) cover
the whole area is investigated in [25]–[33]. The main purpose
is to ensure that any point in the target area can obtain a
sufficient charging power by the rechargeable nodes.

In [25], [26], to ensure that the rechargeable nodes can
harvest sufficient energy for continuous operation, two kinds
of energy provisioning problems are considered, i.e., point
provisioning and path provisioning. In the point provisioning
problem, the number of chargers needs to be optimized to
ensure that any point in the target area can obtain a suf-
ficient charging rate. For this problem, through exploiting
the triangular deployment technique, a lower bound of the
optimal solution is firstly derived and then an approximate
method based on a designed side length of the triangles is
provided. In the path provisioning problem, the rechargeable
nodes are assumed that they can move in the network to further
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Optimization Object Network Performance Target Area Direction of Chargers
[25]–[29] the number of chargers full coverage 2D area omnidirectional
[30] the number of chargers full coverage 2D area directional
[31] the number of chargers full coverage 3D area omnidirectional
[32], [33] the number of chargers communication latency 2D area omnidirectional
[34] the positions of chargers partial coverage 2D area omnidirectional
[35], [36] the positions of chargers charging utility 2D area omnidirectional
[37], [38] the positions of chargers charging utility 2D area directional
[39] the positions of rechargeable nodes charging cost 2D area omnidirectional
[40] the positions of connected chargers charging utility 2D area omnidirectional
[41] the positions and directions of chargers charging utility 2D area with obstacles directional
[42], [43] the positions of chargers charging utility and EMR safety 2D area directional

TABLE I: Overview of Charger Deployment Algorithms

reduce the number of required chargers. In this case, some
rechargeable nodes can harvest more energy in the power-
rich areas. Under such a model, given the mobility pattern
of the rechargeable nodes, they try to ensure the cumulative
harvested energy in a period is larger than a certain threshold.
A triangular deployment based method is also proposed for
this problem.

The work in [27] investigates the co-deployment problem
of chargers and base stations. In their network model, each
rechargeable node has a fixed sampling rate for environment
sensing, and the sampled data is required to be uploaded
to a base station through either one-hop or multi-hop wire-
less transmissions. To ensure continuous operation of the
rechargeable nodes, a minimum number of chargers and base
stations needs to be identified with an optimal deployment
strategy and routing path planning. For each sub-problem
of deploying chargers or base stations, the authors proved
it to be NP-hard. To tackle these problems, the problem of
deploying chargers and the problem of deploying base stations
are optimized iteratively. In particular, through transforming
each sub-problem to a max-flow problem, a set of chargers
or base stations are selected based on their contributions
to the total flow rate. Then, a greedy algorithm is given
for deploying chargers and base stations, respectively. The
proposed algorithm is proved to have a guaranteed worst-
case bound lnR/ξ, where ξ is a small threshold to ensure the
expected data rate can be satisfied and R is the network radius.
In addition, the particle swarm optimization based algorithms
for the charger deployment problem are studied by [28], [29].

The work in [30] tries to utilize as few directional wireless
chargers as possible to cover a whole area, and a heuristic
algorithm is proposed. In [31], a more general model is consid-
ered, where the rechargeable nodes are deployed in a 3D target
area, and each charger is equipped with a 3D-beamforming
directional antenna. Two heuristic algorithms are proposed to
reduce the number of chargers. In [32], [33], to further reduce
the communication latency, the transmission collisions during
the deployment of RFID readers are considered. In their works,
the RFID readers are regarded as the chargers and the data
collection devices simultaneously.

The work in [34] investigates the partial coverage problem.
It is assumed that the movement of rechargeable nodes follow
some degree of regularity. Under this assumption, the authors
try to find the optimal positions of the chargers while the
survival rate of the rechargeable nodes is maximized. In this
work, to reduce the total deployment cost, the partial coverage
approach (some rechargeable nodes may run out of energy)

is employed, and the survival rate is defined as the ratio of
the number of dead rechargeable nodes to the total number
of rechargeable nodes. This problem is proved to be NP-hard
by reduction from the Min-Sum Multicenter problem, and a
heuristic method is proposed.

Secondly, the charger placement problem which tries to find
the optimal positions of chargers considering the harvested en-
ergy at rechargeable nodes (i.e., charging utility) is investigated
in [35]–[39].

The work in [35] investigates the charger deployment prob-
lem which tries to optimize the overall charging utility in a 2D
target area. Due to the hardware constraints, each rechargeable
node has an upper bound for its received charging power. The
charging utility is defined as follows: 1) it is firstly propor-
tional to its received charging power; 2) when the received
charging power reaches the upper bound, it becomes constant.
Specifically, given a set of candidate points which can be
used for placing chargers, the following optimization problem
is considered: finding a charger deployment strategy and its
corresponding power allocation schedule while the overall
charging utility is maximized subject to a power budget. It has
been proved that this problem is NP-complete. By assuming
a set of adjustable power levels, an approximation algorithm
with an ratio of (1 − 1/ϵ)/2L is proposed, where L is the
maximum power level of a charger and ϵ is a much small
number. In [36], the authors study the charger deployment
problem when the chargers have limited mobility. To reduce
the searching space of the proposed problem, they proposed a
method to approximate the nonlinear charging power of charg-
ers and an approach to construct the maximal covered set with
uniform subareas. A geometrical technique is also proposed to
transform the proposed problem to a mixed integer nonlinear
programming problem. Then, an approximation algorithm with
a ratio (1/2− ϵ) is proposed with linear programming.

The work in [37], [38] exploit the same concept of charging
utility as in [35]. Different from [35], the directional charging
model is employed. In such a charging model, a charger si
with a orientation vector −→rθ can only charge the nodes which
are lying in the shape of a sector with charging angle As and
charging radius Dc. In their charging model, each rechargeable
node is also equipped with a directional antenna which can
only harvest energy when its orientation and distance from
the charger satisfy a certain condition. To determine whether
the target area can be omnidirectionally charged with a set
of directional chargers, the authors proposed a minimum
coverage set extraction technique with area partition, which
reduces the continuous search space to a discrete one. A
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fast determination algorithm is then proposed. In addition, the
problem of computing the probability that the target area can
be omnidirectionally charged with a set of randomly deployed
chargers is also studied. To address this problem, a group of
grid points are used to replace the target area to reduce the
searching space, and then a relaxation method is employed
to approximate the chargers’ power. The upper bound of
the probability that the whole area can be omnidirectionally
charged is derived. In [39], the authors studied the deployment
problem of rechargeable nodes and the routing arrangement
problem in BF-WSNs, which tries to minimize the total
consumed energy of the charger. The problem is proved to
be NP-complete and several heuristic algorithms are proposed
to address this problem.

Thirdly, considering the connectivity of chargers, the area
with obstacles, and the electromagnetic radiation safety, the
charger deployment problem is studied by [40]–[43].

The work in [40] investigates the deployment problem with
omnidirectional chargers and assume the deployed chargers
are connected. The authors tries to maximize the overall
charging utility subject to a group of connected chargers. To
address this problem, the proposed algorithm mainly includes
the following four steps: 1) region division, the whole area
is discretized into uniform regular hexagon cells and then
classified into different groups; 2) profit assignment, a greedy
algorithm is proposed to assign the obtained utility of the
candidate positions where the charger can be deployed; 3)
Quota Steiner Tree (QST) construction, a Quota Steiner Tree
with maximum charging utility is constructed in the connected
graph; 4) subtree seelction: a dynamic programming algorithm
is proposed to find the best subtree with the given number
of chargers in the QST. The algorithm is proved to have an
approximation ratio of 1.5 times better than that of the existing
algorithms. In addition, the charger deployment problem under
directional charging model is also considered in this work.

The work in [41] investigates the charger deployment prob-
lem where there exist several obstacles with arbitrary shapes in
a 2D plane. Under such a model, an optimal deployment plan
of the directional wireless chargers is expected, including the
positions and orientations of these chargers, while the total
charging utility is maximized. To address this problem, the
authors exploit a piece-wise constant function to approximate
wireless chargers’ power. An area discretizion method is also
given to partition the whole area so that a certain type of
chargers have constant approximated charging power in the
partitioned subareas and a dominating coverage set based
algorithm is employed to reduce the searching space. After
these transformation, the problem is proved to fall in the realm
of optimizing a monotone submodular function with a partition
matroid constraint. A greedy algorithm with an approximation
ratio of (1/2− ϵ) is proposed accordingly.

Other papers consider the charger placement problem with
electromagnetic radiation (EMR) safety. In [42], [43], the
authors try to optimize the overall charging utility subject
to the EMR intensity at any point in the target area is not
larger than a threshold. Through dividing the whole area
into grids with equal length, the problem is formulated into
the Multidimensional 0/1 Knapsack (MDK) problem. Then,

based on the existing algorithms for the MDK problem, an
approximate algorithm is proposed. The proposed algorithm is
proved to have a performance better than (1−ϵ) of the optimal
solution when the EMR threshold is (1−ϵ/2)Rt and the EMR
coverage radius is (1+ ϵ/2)D, where ϵ is an arbitrarily small
positive value, Rt is the EMR threshold, and D is the EMR
coverage radius of chargers.

2) Charger Scheduling Algorithms in BF-WSNs: Some
works try to schedule the status, orientations, and power levels
of the chargers to satisfy specific requirements, which are
summarized in Table II.

The charger scheduling problem considering the status of
wireless chargers is studied in [44], [45]. The authors assume
there exist a set of wireless chargers deployed in the target
area, and consider a simple charger scheduling model where
each charger can be either in the on or off status. The objective
is to maximize the overall charging utility subject to the
charging safety of the whole field, i.e., to ensure the sum
of the intensity of EMR at any point in the network does
not exceed a certain threshold. This problem is proved to be
NP-hard and a solution which can outperform the optimal
solution with a relaxed threshold (1−ϵ)Rt is proposed, where
Rt denotes the EMR threshold. The main idea is to employ
a constraint reduction method to reduce the constraints in the
non-linear optimization problem, and then transform it to a
multidimensional 0/1 knapsack problem.

In [46], [47], it is assumed that a rechargeable node can
be either in the working status or charging status, and the
rechargeable node cannot work and harvest energy simultane-
ously. The aim is to schedule rechargeable nodes to achieve
a desirable network utility, which is proved to be NP-hard.
To address this problem, the authors first study a special case
of this problem, where all the rechargeable nodes are only
one hop away from the charger. Through employing geometric
programming and convex optimization, an optimal solution is
obtained. For the general case with a multi-hop network, an
algorithm based on the Lyapunov optimization technique is
designed, which has a theoretical performance guarantee. The
proposed algorithm can decouple the primal problem with a
dynamic energy threshold vector, and then obtain the desirable
state of each node according to its battery level.

The charging scheduling problem considering the orienta-
tions of the directional chargers is studied in [48]–[50]. In [48],
the authors consider the charger deployment problem when the
rechargeable nodes have limited mobility, i.e., drifting within
a certain range. That is, given a set of directional wireless
chargers with fixed positions and adjustable orientations, and
a number of rechargeable nodes which can drift within a
certain range in a 2D area, how to schedule the orientations of
wireless chargers so that the overall expected charging utility
is maximized. For this problem, they first define the charging
power as a random variable which is independent of other
chargers. Then, they exploit an area discretization method to
partition the target area into grids so that the charging power
in each subarea can be approximated and the approximation
error can be bounded. To reduce the searching space, they also
proposed a method to discretize the orientations of chargers.
After that, they propose an approximation algorithm with a
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Optimization Objective Network Performance Target Area Directional of Wireless Charger
[44], [45] status of chargers charging utility and EMR safety 2D area omnidirectional
[46], [47] status of rechargeable nodes network utility 2D area omnidirectional
[48]–[50] orientation of chargers charging utility 2D area directional
[51] power of chargers charging efficiency 2D area directional
[52], [53] power of chargers harvested energy and EMR safety 2D area omnidirectional
[54], [55] power of chargers harvested energy and latency 2D area omnidirectional
[56]–[59] power of chargers charging utility and EMR safety 2D area omnidirectional
[60] power of chargers charging fairness 2D area omnidirectional
[61], [62] moving speed of rechargeable nodes charging utility 2D area directional

TABLE II: Overview of Charger Scheduling Algorithms

ratio of (1/2 − ϵ). In [49], [50], the authors consider the
charger scheduling problem in a 2D target area which tries
to maximize the overall charging utility when given a series
of charging tasks. For the offline algorithm, they prove the
proposed problem is NP-hard, and prove a relaxed version
of the proposed problem falls in the realm of maximizing a
submodular function subject to a partition matroid constraint.
A centralized algorithm with an approximation ratio of (1 −
p)(1−1/ϵ) is proposed, where p denotes the switching delay of
the directional chargers. In addition, for the online algorithm,
a distributed scheduling algorithm with a competitive ratio of
1/2(1− p)(1− 1/ϵ) is also proposed.

The charger scheduling problem considering the power level
of chargers is studied in [51]–[60].

The work in [51] tries to improve the energy transfer effi-
ciency by adjusting the directional charging power adaptively.
In their charging model, if a wireless charger concentrates the
energy from the directions of N sectors into M sectors, the
power intensity in the intended directions will be increased
N/M times of the omnidirectional one. And there is a tradeoff
between the power intensity of the energy beams and the
number of nodes being charged. Under such directional charg-
ing characteristic, the closed-form function of the distribution
metrics of the aggregated received power is derived with
the stochastic geometry, and then the Gamma distribution
with second-order moment is employed to approximate the
complementary cumulative distribution function. In [52], [53],
the authors study the scheduling problem of charging power
subject to the safety constraints on the EMR incurred. Given
a set of wireless chargers and a set of rechargeable nodes,
each charger is assumed to have an initial energy and each
rechargeable node is assumed to have a battery capacity. The
authors try to compute the charging power (charging radius)
of each charger to maximize the total harvested energy in
the network subject to the constraint that the EMR at any
point does not exceed a threshold. They first theoretically
analyze the fundamental properties of the proposed problem
and prove that even a relaxation of this problem (i.e., ex-
ploit a simplified method to approximate the maximum EMR
inside the whole area) is NP-hard. To tackle this problem,
they propose an approximation algorithm by exploiting the
relaxation and rounding technique. An iterative local heuristic
search algorithm is also given, which runs in polynomial time.
The proposed algorithm can decouple the computation of the
objective function from the computation of the maximum
radiation, and it can achieve reasonable trade-off between the
charging efficiency and the EMR safety.

The works in [54], [55] try to schedule the power of chargers

to ensure the total harvested energy of the rechargeable nodes
is maximized and the total charging time is minimized. Given a
set of wireless charging tasks, including the required harvested
energy and charging deadline of each rechargeable node,
they try to schedule the power of each wireless charger
so that the overall harvested energy and the total charging
time are optimized subject to the EMR safety. To address
such a problem, the authors first transform it to a linear
problem with area discretization and regularization, propose
a centralized algorithm. A distributed algorithm, of which
the harvested energy is no less than (1 − ϵ) of the optimal
one, and the charging time is no more than the optimal one,
is also proposed. In [56], [57], the authors try to maximize
the overall charging utility under the EMR safety constraint.
To tackle this problem, they first propose an approximate
algorithm by transforming the proposed problem to a linear
programming problem. A distributed algorithm is also given
with area partition. The main idea is to divide the whole
area into subareas where chargers are lying on the boundaries
of these subareas to enable local computation. Two baseline
algorithms, which can achieve an approximation ratio of 1/4
and 1/3 are proposed, respectively. Only the communication
overhead of the charger with its neighbors are incurred in
these two algorithms. The above studies focus on the EMR
safety which try to ensure the expected EMR at any point
in the area does not exceed a threshold. In [58], [59], the
authors consider the scenario that the EMR jitter may exceed
the threshold even if the expected EMR does not. They try
to schedule the power of chargers to maximize the overall
charging utility subject to the probability of the EMR at any
point in the area is not exceeding the threshold is no less
than a given parameter. Through EMR approximation and
area discretization, the proposed problem is transformed to a
second-order cone problem. To reduce the computation cost, a
second-order cone constraint reduction algorithm is proposed,
and then, a centralized algorithm with an approximation ratio
of (1 − ϵ) is given. In addition, a fully distributed algorithm
with approximation ratio of (1− ϵ) is also given.

Different from the above methods which focus on opti-
mizing the overall charging utility of rechargeable nodes, the
work in [60] focuses on the charging fairness. For fairness, the
authors try to maximize the minimum charging utility among
the rechargeable nodes on the contrary. An area discretization
method is adopted to transform the proposed problem from a
nonlinear optimization problem to a linear optimization one.
Then, a centralized algorithm is proposed with lagrangian
dual. A distributed algorithm is also proposed, which has an
approximation ratio of 1 − ϵ. The main idea is to divide the
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whole area into subareas, so that the optimization problem in
each subarea can be considered independently and safely (the
EMR intensity at any location in the target area does not
exceed a given threshold). The authors in [61], [62] investigate
the energy provisioning problem with mobile rechargeable
nodes. In their model, there is a set of wireless chargers
and a single rechargeable node, which can move in a region
of interest. They state that the continuous operation of the
rechargeable node may cannot be ensured under the constraint
of the moving speed and battery capacity of the node. Thus,
a metric, called Quality of Energy Provisioning, is proposed,
which denotes the expected time that a node can keep con-
tinuous operation under its node speed and battery capacity
constraints. When there is only one wireless charger, the tight
upper and lower bounds are derived when a node moves in
the 1D scenario based on flow pattern analysis. When there
are multiple chargers in the general 1D and 2D scenarios, the
tight lower bound and loose upper bound are also analyzed.

B. Mobile Charging

In the mobile charging scenario, generally, there is a set
of rechargeable nodes deployed in a target area, a mobile
charger (or a group of chargers) which is responsible for
moving around in the target area to charge these rechargeable
nodes and collect the sampled data from these nodes, and
also a base station which acts as the role of data storage
and computation and battery replacement of chargers. Once
if a rechargeable node finds its residual energy is less than a
threshold, it sends a charging request which includes its posi-
tion, average energy consumption rate and residual lifetime to
the mobile charger nearby. When a mobile charger receives a
charging request, it will first be stored in the waiting queue.
After the mobile charger receives enough requests, it derives a
charging plan including a travelling path and the corresponding
power allocation scheme. When the mobile charger finishes a
charging mission, it travels back to the base station and takes
a quick battery replacing service with a negligible delay.

For mobile charging, a lot of works have been proposed
with different optimization objectives, such as the number of
mobile chargers, charging delay, network lifetime, total energy
cost, event covering utility, etc. In the following, we categorize
the existing works according to their objectives.

1) Minimizing Number of Mobile Chargers: How to obtain
the minimum number of mobile chargers satisfying the energy
consumption in the whole network is one of the fundamental
charging scheduling problems in BF-WSNs.

The work in [63] investigates the problem of minimizing
the number of energy-constrained mobile chargers in a 2D
target area subject to all the rechargeable nodes in the network
being able to work continuously. The problem is proved to be
NP-hard by reduction from the distance constrained vehicle
routing problem. To address this problem, they first relax the
linear constraints in the optimization problem and transform
it to a distance constrained vehicle routing problem, and then
propose an approximate algorithm for the relaxed version and
then an approximate algorithm is also proposed for the original
problem. In [64], the authors remove the energy constraint of

mobile chargers and assume a mobile charger can charge only
one node at a time. Under such assumption, a greedy algorithm
is proposed to minimize the number of chargers.

The work in [65] tries to reduce the number of mobile
chargers by jointly scheduling the traveling plans of mobile
chargers and the depot positions of the mobile chargers (the
position where the chargers replenish its energy). To address
this problem, the authors take a mobile charger’s charging
cycle and the working lifetime of rechargeable nodes into
account. That is, they try to ensure the charging cycle of a
mobile charger is no larger than the lifetime of rechargeable
nodes. In this work, the authors not only try to minimize
the required mobile chargers, but also try to improve the
energy efficiency of mobile chargers, i.e., the ratio of the
charging time of a charger over its traveling time. For a
mobile charger with larger battery capacity, a periodic charging
scheme is designed, where each mobile charger can serve one
tour periodically before it runs out of energy. In such a scheme,
the network is first divided into a number of charging tours,
and then the depot positions of mobile chargers are determined
based on these charging tours. For a mobile charger with
limited battery capacity, the authors try to let it serve different
charging tours to maximize its energy efficiency. In this case,
it can avoid the problem that a mobile charger spends only a
short charging time in a particular tour, which results in poor
energy utilization.

2) Minimizing Charging Delay: The charging delay, which
is defined as the required time for a mobile charger to finish
its assigned charging tasks (i.e., satisfying the energy request
of each rechargeable node), including the charging time and
traveling time of the charger, is an important evaluation metric
in BF-WSNs.

The work in [66] studies the problem of finding an optimal
traveling plan to minimize the total charging latency while all
the rechargeable nodes can harvest enough energy. For such a
problem, the authors first propose an optimal algorithm based
on linear programming, which requires exponential computa-
tion time. To reduce the computation cost, an algorithm with
approximation ratio (1 + θ)/(1 - ϵ) is proposed by discretizing
the charging power in a 2D area, where θ and ϵ denote two
system parameters. The proposed algorithm has a computation
complexity of O((N/ϵ)2), where N denotes the number of
rechargeable nodes in the network. In [67], the authors try to
jointly optimize the traveling tour of each mobile charger and
the location of the base station to further reduce the charging
latency. Besides the charging latency, the authors in [68] try to
minimize the communication delay between an RFID reader
and an RFID tag, which includes the charging time and the
transmission time. In this work, two movement patterns of a
reader are considered: linear movement and 2D movement.
For the linear pattern, an optimization algorithm is proposed.
For the 2D pattern, an approximation algorithm is designed.

The work in [69] focuses on the charging problem with
directional chargers. Note that, under the directional charging
model, the harvested energy at the rechargeable node is related
to the distance between it and a mobile charger and the
orientations of the rechargeable node and the charger. In their
network model, a mobile charger is assumed to travel and
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stop at a set of planned locations to charge its surrounding
rechargeable nodes. The problem is first formulated as a
linear programming problem. Then, an optimal solution is
obtained by searching all the possible orientations with the LP
solver. To reduce computation complexity, a charging power
discretization method is proposed to reduce the searching
space and bound the charging delay to the optimal one by
1/(1−ε2), where ε is a power difference threshold. A merging
technique is also given to further reduce the charging delay
by approximating the neighboring charging sections.

In [70], the authors try to charge the rechargeable nodes in
an Area of Interest (AoI) with a directional wireless charger
whose charging area is in a shape of a sector. In their model,
there is a set of omnidirectional wireless rechargeable nodes
deployed in a simple polygon based AoI area with density ρ.
An optimal charging plan is expected for a mobile charger to
charge the rechargeable nodes inside the AoI while the charg-
ing latency is minimized. To tackle this problem, the AoI is
first divided into rectangle-like and sector-like subareas. Then
a rectangle-based moving strategy and a sector-based rotating
strategy are proposed for the rectangle-like and sector-like
subareas, respectively. Through calculating the charging time
of all the subareas including the rectangle-like subareas and
sector-like subareas, they prove that the proposed algorithm
can be upper bounded by a value proportional to the size of
the AoI. In [71], [72], the authors study the charging latency
minimization problem with multiple mobile chargers. In this
work, the multi-node charging scheme is employed, where a
mobile charger can charge multiple nodes simultaneously, but
each node can be charged by only one mobile charger. Since
there are multiple chargers in a network, they try to optimize
the longest charging delay of these chargers. An approximation
algorithm with a constant approximation ratio is proposed.

3) Maximizing Network Lifetime: Since an unpredictable
event may occur at any place and anytime throughout the
network, the death of any node may lead to event missing,
which should be avoided in safety-critical applications.

The work in [73] tries to minimize the number of recharge-
able nodes running out of energy to prolong the network
lifetime. That is, given a set of charging requests, they try
to find an optimal charging plan to minimize the number
of dead nodes during the whole charging period. To address
this problem, the authors design a temporal-spatial charg-
ing scheduling algorithm. The proposed algorithm tries to
construct a traveling path from a global view, rather than
charging the nodes according to their priorities and orders
in the queue. When constructing a travelling path, a short
queue is maintained since fewer nodes in a queue may result
in a more accurate solution. In addition, the nodes which may
dramatically increase the traveling latency are discarded in
advance. The optimality of the proposed algorithm is analyzed
based on the queuing model. In [74], the authors try to improve
the survival rate of rechargeable nodes with a grid-based
routing and charging algorithm. In this work, a network is
divided into grids of same size, and a mobile charger only
stops at the intersections of grids to charge the rechargeable
nodes. In [75], the authors also exploit a grid-based method,
and a localized algorithm is proposed to compute a traveling

plan to prolong the network lifetime.
The work in [76] investigates the online mobile charging

problem with multiple cooperative wireless chargers. To im-
prove the survival rate of the rechargeable nodes, they try to
take the spatial and temporal correlations of charging requests
into account, i.e., the deadline of charging request, and the
distance between the nodes and the mobile charger. Each
mobile charger is responsible for the charging requests in
a designated field, and for computing its charging travelling
path independently according to a metric which combines the
charging deadlines and distances. They model the problem as
a multiple objective joint optimization problem, which tries
to maximize the energy efficiency and the survival rate of
rechargeable nodes. The theoretical performance is analyzed
through an M/M/n/mTS queuing model. Besides the above
online scheduling algorithm, some intelligent learning based
algorithms for the charger planning problem are studied in
[77]–[79] to reduce the number of dead nodes.

In [80], the authors try to maximize the network lifetime for
the application of area monitoring. In this work, the network
lifetime is defined as the time interval between the time when
the target area is fully monitored and the time when a coverage
hole appears. The problem is defined as follows: given the
energy burden of a mobile charger, find an optimal strategy of
a charger’s energy transferring plan (i.e., divide its available
energy among the rechargeable nodes), and the activation pat-
terns of rechargeable nodes (the active/inactive time of nodes),
to maximize the network lifetime. This problem is proved
to be NP-complete. An approximate algorithm is proposed
by exploiting the minimum set cover technique, An energy
dividing strategy is also designed according to the energy con-
sumption rate of each rechargeable node. In [81], the authors
try to improve the charging efficiency considering the fact that
rechargeable nodes take unproportionally long charging time
when their batteries are almost full. A mixed partial and full
charging model is introduced, where each rechargeable node
can be partially/fully charged by a mobile charger. In this
work, a charging schedule is first generated to maximize the
overall survival rate (which is defined to quantify the lifetime
of rechargeable nodes) by adopting the full charging model. If
the optimal survival rate can be achieved, the partial charging
model is adopted to maximize the overall survival rate. The
shortest Hamiltonian path is used to initialize the traveling
path of a mobile charger to reduce the traveling cost.

The authors in [82] try to control the velocity of mobile
chargers to maximize the network lifetime. In this work, it
is assumed that a mobile charger travels along a pre-planned
itinerary. The authors try to maximize the minimum received
energy among all the rechargeable nodes to avoid uneven
energy replenishment. Different from the above studies, the
authors mainly focus on the velocity of the mobile chargers,
which also plays a key role in charging scheduling. A simple
version of the proposed problem where there is one recharge-
able node in a general 2D scenario with any kind of itinerary
is first studied. Then, for the proposed problem with multiple
rechargeable nodes, an efficient algorithm is also proposed
with spatial and temporal discretization. In [83], the authors
consider the velocity-control problem when mobile chargers
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have constrained energy capacity. Additionally, they assume
there are several depot positions deployed along the traveling
path for the mobile chargers to replenish their energy.

4) Minimizing Energy Cost: Some works try to jointly
optimize the movement cost and energy consumption of the
mobile chargers during the charging period.

The work in [84] tries to minimize the ratio of the time
that a mobile charger stays at the service station over the
whole charging period. A cellular based structure is used to
divide the whole area into adjacent hexagonal cells and it is
assumed that a mobile charger can only stay at the center
of these cells to charge the rechargeable nodes. Then, the
proposed problem is formulated as an optimization problem
considering the traveling itinerary and charging time of the
mobile chargers, and the flow routing cost. An discretization
and reformulation-linearization based algorithm is proposed.
In [85], the authors try to minimize energy consumption
subject to keeping continuous operation of each rechargeable
node. They formulate the proposed problem as a mixed-
integer linear programming problem, which is decomposed
into several sub-problems that can be easily solved.

The work in [86] assumes there exist several charging
itineraries for mobile chargers. Given a set of rechargeable
nodes and a set of candidate travelling itineraries of mobile
chargers, they try to find a subset of travelling itineraries
while the energy consumption is minimized subject to all
the rechargeable nodes being able to be fully charged. The
following two factors of energy consumption are considered :
1) the energy loss caused by charging is related to the charging
distance and time; 2) the energy consumption caused by
moving is used to support the movement of a mobile charger.
The problem is proved to be NP-complete by reduction from
the set cover problem. To tackle this problem, a relaxed version
of the proposed problem where each itinerary can be used
only once is first studied. An approximation algorithm with a
ratio of O(lnN) is proposed by iteratively choosing the most
cost-effective itinerary and removing the covered rechargeable
nodes, where N is the number of rechargeable nodes. For the
general case where each itinerary can be used several times, an
approximation algorithm with a ratio of 10 is proposed with
the primal-dual technique.

The work in [87] tries to exploit the concept of bundle
charging to reduce the energy consumption. In this work, the
rechargeable nodes are assumed to be densely deployed, i.e.,
several nodes are deployed in a same bundle. In this case,
only when the number of nodes running out of energy in
a bundle exceeds a predefined threshold, a charging task is
activated. Then a mobile charger moves around the network
to charge the rechargeable nodes bundle by bundle. Here, not
only the number of charging bundles is minimized, but also
the total energy cost, including the moving cost and charging
cost, is minimized. To address this problem, a greedy bundle
generation algorithm is proposed to minimize the number of
bundles. Then, a TSP-based algorithm is proposed to reduce
the traveling cost of the mobile chargers.

5) Optimizing Event Covering Utility: To avoid mis-
detecting the stochastic event, some works try to improve the
event covering utility when conducting energy transferring.

The work in [88] investigates the problem of capturing
stochastic events in BF-WSNs for the first time. In this work,
the authors assume the stochastic events occur around the
rechargeable nodes and will stay for a period of time following
the exponential distribution. A event is called captured if a
rechargeable node is active when the event occurs. Under
such a model, the authors try to jointly mobilize chargers and
schedule the status of rechargeable nodes to optimize quality
of monitoring (QoM), i.e., the ratio of the captured events to all
the occurring events. In [89], the authors assume that events
occur in a certain area one by one, which are spatially and
temporally independent. Since the events come unexpectedly,
the recharging tasks cannot be known in advance. Therefore,
they try to make some approximation when selecting a set
of target nodes to be charged while the event covering utility
is maximized. The problem is proved to be NP-complete and
several heuristic algorithms are proposed.

In [90], the authors consider a different model to maximize
the event covering utility. In their model, a mobile charger
moves around the network periodically and the mobile charger
repeats its charging plan in every period of time T , which
means its charging time and travelling time is less than T in a
round. Rechargeable nodes can be either active or inactive in
each time slot, and the activation schedule is decided by the
mobile charger. Thus, to maximize the event covering utility,
there are two issues need to be addressed: 1) how to choose the
set of charging nodes and their charging time; 2) how to decide
nodes’ active/inactive states based on the harvested energy. To
tackle this problem, a relaxed version of the proposed problem
is first studied where the traveling time of a mobile charger
is ignored. Such a relaxed version is also proved to be NP-
hard. The authors formulate it as a maximization problem
with submodular function under a certain condition. For such
problem, an approximation algorithm with a ratio of 1/6 is
proposed. Based on this, an approximate algorithm is also
proposed for the proposed problem where the traveling time
of a mobile charger is considered.

The work in [91] considers the problem of scheduling
mobile chargers to maximize the event covering utility with
collaborative monitoring. It is assumed that a task can be col-
laborative monitored by multiple sensors. As a result, charging
all the nodes may increase the total energy consumption and
degrade the charging utility because of spatial redundancy. In
this work, the authors jointly consider the deployment problem
of rechargeable nodes and the scheduling problem of mobile
chargers, and try to maximize the event covering utility. They
formulate the problem as a general convex optimization prob-
lem under the energy constraint of the mobile chargers. The
area partition and charging discretization methods are given to
formulate the proposed problem to an optimization problem
with submodular function. An approximation algorithm with
a ratio of (1−ϵ)/4(1−1/e) is proposed, where ϵ (0 ≤ ϵ ≤ 1)
is an arbitrarily small positive parameter. In [92], the authors
assume a rechargeable node may participate in several tasks
simultaneously. In this case, different rechargeable nodes may
have different energy requirements and charging utility for
task execution. To maximize the overall event covering util-
ity, a surrogate function and an approximated traveling cost
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is employed to formulate this problem as an optimization
problem with essentially monotone submodular. An energy
allocation scheme is also proposed for task cooperation, and
finally, a reward-cost based algorithm is proposed which has
an approximation ratio of (1− 1/ϵ)/4.

The work in [93] investigates the problem of scheduling
mobile chargers with the k-coverage guarantee, where each
target needs to be covered by at at least k rechargeable sensor
nodes. At the beginning, the authors assumed each target is
covered by a set of nodes, of which the number is much
larger than k. Thus, some nodes can run out of energy to
reduce the charging burden of a mobile charger. A theoretical
model which analyzes the performance improvement in terms
of the charging capability of the mobile charger, is proposed,
including the maximum distance it can cover in both the 1-D
and 2-D scenarios. Then, a distributed algorithm is proposed
by grouping the rechargeable nodes into clusters for target
monitoring under the k-coverage constraint.

6) Optimizing Charging Utility: Generally, the energy
charging to a rechargeable node is modeled as a utility
function, which is a non-increasing submodular function on the
residual energy of the rechargeable node. Under such charging
scheme, the mobile charging scheduling problem which tries to
optimize the overall charging utility is studied by [94]–[102].

The work in [94] tries to find an optimal traveling tour of a
mobile charger to maximize the overall charging utility gain.
The utility gain of each rechargeable node is defined inversely
proportional to its residual battery level, which means a node
with less residual battery level has more utility gain. To
address such a problem, the authors first consider the charging
utility gain maximization problem where the total distance
of the traveling tour of the mobile charger per tour is not
larger than a given threshold, which is proved to be NP-
hard. An approximation algorithm with quasi-polynomial time
complexity is proposed. In addition, to further reduce the
time complexity, a heuristic algorithm is proposed, which can
handle the scenario when the rechargeable nodes exploit a
dynamic energy consumption model. Additionally, the online
scheduling algorithm when the rechargeable nodes are charg-
ing at the fixed time intervals is also studied.

The work in [95] considers a different sub-modular func-
tion for charging utility gain, in which the charging utility
gain of a rechargeable node is defined proportional to the
amount of the received energy of itself and also its neigh-
boring nodes. The authors employ an one-to-many charging
scheme, where the mobile charger can charge multiple nodes
simultaneously. They first consider the charging utility gain
maximization problem under the energy capacity constraint
at the mobile charger. A constant approximation algorithm
is proposed by ignoring the traveling energy consumption of
the mobile charger, and a heuristic algorithm is proposed as
well for the proposed problem considering the traveling energy
consumption, which is transformed to a length-constrained
utility maximization problem. Furthermore, the problem of
minimizing the length of the traveling tour subject to all the
requesting nodes being charged is studied. An approximation
algorithm with a constant ratio is proposed by assuming the
mobile charger has enough energy to charge all the requesting

nodes and support the energy consumption of its traveling.
The work in [96] assumes each charging request is assigned

with a deadline and each node can be charged for many
times before its deadline. Given a set of charging requests
with deadline constraints, its purpose is to find the optimal
charging plan to maximize the overall charging utility, which
is related to the amount of nodes’ harvested energy before the
deadline. In addition, it is assumed that the charging demands
of the rechargeable nodes can be divided into several sub-
demands. To jointly optimize the charging spots (where the
mobile chargers stop to charging the rechargeable nodes) and
the traveling path, they formulate the proposed problem as
an optimization problem with submodular function subject
to a partition matroid constraint. To tackle this problem, an
approximation algorithm with a ratio of 1/2 is proposed
to select the charging spots based on spatial and temporal
decomposition. Then, a grid-based skip-substitute method is
designed to further reduce the traveling time and to increase
the overall charging utility.

Based on [96], the authors in [97] distinguish the recharge-
able nodes according to the different importance of the data
they delivered. Given a set of charging requests with dead-
lines, an importance-different charging scheduling strategy is
proposed to further improve the overall charging utility as well
as to improve the performance of data loss. In the proposed al-
gorithm, they first try to compute the candidate charging spots,
and then find the mismatch between the deadline and spatial
constraints. An area discretization method is also exploited
to reduce the infinite candidate charging spots to a finite
one. Through using a bipartite graph to combine the spatial
and temporal constraints, the authors transform the proposed
problem into a maximization problem with monotone submod-
ular function subject to a partition matroid constraint. In the
proposed matroid model, the charging requests’ deadline and
the penalty value of the task are considered. Then, a greedy
algorithm with an approximation ratio of 1/2 is designed
where all the charging requests are classified as either the
early tasks or the delayed tasks. The more important nodes
with an earlier deadline will be assigned a higher priority
and are involved in the early tasks. In addition, to maximize
the overall charging utility, the authors proposed a method
to adjust the sequence of rechargeable nodes by finding a
shorter path. In [98], the authors assume the rechargeable
nodes can upload data to the fusion center and a mobile
charger travels on a pre-planned itinerary to charge these
nodes. The data loss rate is defined by the expected number of
data packets which are dropped due to lack of energy. In this
work, the authors first design an empirical prototype by using
an off-the-shelf RF energy transfer hardware. According to the
practical performance of the RF energy transfer hardware, they
establish an empirical model and use it to jointly optimize the
travel planning and charging plan. The optimal traveling and
charging plan is derived based on a Markov decision process.

The work in [99] investigates the charging utility optimiza-
tion with obstacles in the field, which tries to maximize the to-
tal harvested energy of all the rechargeable nodes. To measure
the impact of obstacles on charging, they first design a new
theoretical charging model based on the Fresnel diffraction
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model and conduct empirical experiments to demonstrate its
effectiveness. Then, a spatial discretization method is proposed
to obtain a set of finite charging spots of a mobile charger.
The proposed problem with energy constraints is formulated
as an optimization problem with submodular function and an
algorithm with an approximation ratio of (1 − ϵ)(e − 1)/2e
is proposed. The game theory based algorithm is studied in
[100], where a collaborative charging scheduling method is
proposed to help a mobile charger to make optimal charging
decisions.

Different from the above works which focus on the 2D
scenario with mobile chargers moving on the ground, the
authors in [101] study the mobile charging problem in a
3D network where an Unmanned Aerial Vehicle (UAV) is
exploited. In this work, the authors try to find the optimal
trajectory planning to maximize the total harvested energy
subject to the energy constraint of the UAV, including the
moving, hovering, and charging costs. To address this prob-
lem, a spatial discretization method is proposed to obtain a
finite number of charging spots for the UAV, and a temporal
discretization method is proposed to calculate the charging
time for each charging spot. The problem is then formulated
as an optimization problem with submodular maximization,
and a cost-efficient algorithm is proposed. The work in [102]
investigates the period-area coverage problem. Given a target
area where a set of rechargeable nodes are deployed for
sensing events periodically, the authors try to schedule the
traveling path of the UAV to ensure all the target areas can be
monitored once in each period. The charging utility is defined
as the ratio of the received energy at the requesting nodes over
the total consumed energy. It is assumed that the whole target
area cannot be covered by the set of rechargeable nodes, and
the UAV not only needs to charge the rechargeable nodes, but
also needs to move to the vacant region to monitor the area.
A hexagonal decomposition scheduling method is proposed
to maximize the charging utility and a grid-based scheduling
algorithm is proposed to reduce the computation complexity.

III. COMMUNICATION AND NETWORKING

Communication and networking are two main components
in BF-WSNs, which indicate the pattern for connecting
battery-free sensor nodes and exchanging information among
these batter-free sensor nodes. Communication and networking
in BF-WSNs include the communication modes for battery-
free sensor nodes, routing protocols for transmitting data
packets among battery-free sensor nodes, scheduling strategies
for data broadcasting and data collection in a network, and
in-network processing methods for data transmission. The
communication modes for battery-free sensor nodes determine
the connections among battery-free sensor nodes in a network.
Based on the connections among battery-free sensor nodes,
the routing protocols determine the network topology for all
battery-free sensor nodes. According to the network topology,
scheduling strategies for data broadcasting and data collection
could be implemented to improve network performance. Be-
sides, in-network data processing could be combined with data
transmission to further improve network performance.

However, according to the energy characteristics of batter-
free sensor nodes, it is hard for battery-free sensor nodes
to be awake all the time. As a consequence, communication
and networking become more challenging in BF-WSNs. In
this section, we summarize the works for communication and
networking in BF-WSNs.

A. Communication

1) Ambient Backscatter: Ambient backscatter is a promis-
ing battery-free communication technology in wireless sensor
networks, where transmitters transmit data to receivers by
modulating and reflecting the ambient Radio Frequency (RF)
signals. There are many common RF sources, such as TV
towers, cellular base stations, and WiFi access points, etc.
The biggest challenge in ambient backscatter communication
is that the RF sources are not dedicated for backscatter
communications, which is uncontrollable and unpredictable.
Therefore, most works are proposed for efficient data transmis-
sion, including antenna design [103]–[107], signal detecting
[108]–[112], channel encoding and decoding [113]–[119],
modulation and demodulation [120]–[124]. We omit the details
of these works since they have been extensively covered in
[22] and [125].

2) Wireless Communication: Some works focus on point-
to-point wireless communication between two BF-nodes. The
work in [126] studies two related problems under offline
knowledge of the events: maximizing the number of bits sent
by a deadline, and minimizing the time it takes to send a
given amount of data. The first problem is solved through a
directional water-filling approach. The second one is solved
by mapping it to the first problem via the maximum departure
curve function. Moreover, by using dynamic programming in
continuous time, a throughput optimal policy for the deadline
constrained setting under online knowledge of the events is
proposed.

Similarly, the work in [127] considers the point-to-point
wireless communications in BF-WSN. It investigates the prob-
lem of energy allocation over a finite horizon, taking into
account channel conditions and energy sources that are time-
varying, so as to maximize throughput. Two types of side
information (SI) on the channel conditions and harvested
energy are assumed to be available: causal SI (of the past and
present slots) or full SI (of the past, present and future slots).
It can obtain structural results for the optimal energy alloca-
tion via the dynamic programming and convex optimization
techniques. In particular, if unlimited energy can be stored in
a battery with harvested energy and the full SI is available, we
can prove the optimality of a water-filling energy allocation
solution where the so-called water levels follow a staircase
function. Similar work is also seen in [128], which finds a
power allocation policy that stabilizes the data queue whenever
feasible. Still, for a point-to-point system, using large deviation
tools, the effect of finite data queue length and battery size is
studied in [129] in terms of scaling results as the battery and
queue grow large.

A real sensor node consumes energy not only during
transmission but also during executing source coding tasks,
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such as measurement and compression. The overall energy
consumption for source coding is generally comparable to that
of transmission, and that a joint design of the two classes
of tasks can lead to relevant performance gains. Therefore,
the work in [130] considers the problem of dynamically and
jointly optimizing source coding and some transmission strate-
gies are formulated for time-varying channels and sources.
Specifically, for each node, it can compress its sensory data
with different compression rates which leads to differences
on the amount of data needs to be transmitted, the energy
consumption on coding and the distortion when its sensory
data is discovered by the sink. Here, the energy constraint,
channel condition and data correlation are considered. The
objective is to minimize the cost function of the distortions
in the source reconstructions at the sink under queue stability
constraints. By adopting perturbation-based Lyapunov tech-
niques, a close-to-optimal online scheme is proposed that has
an explicit and controllable trade-off between the optimal gap
and queue sizes. The role of side information available at the
sink is also discussed under the assumption that acquiring the
side information entails an energy cost.

3) Others (RFID, etc.): RFID can be regarded as a kind of
BF-nodes. There are some surveys on this topic: the one in
[18] focuses on security and privacy, the one in [19] is about
applications, and the one in [20] addresses the RFID-based
localization methods.

B. Routing

The routing objectives in BF-WSNs include maximizing
energy utility, efficiency, throughput, reliability and the min-
imum sampling rate. Table III compares the different routing
algorithms, and the details are summarized as follows.

1) Maximizing Energy efficiency: A model is presented in
[131] to characterize the performance of multi-hop networks
in the presence of energy constraints and a routing algorithm
is designed to optimally utilize the available energy. The
energy model can be used to consider different types of
energy sources in heterogeneous environment. The proposed
algorithm is shown to achieve a competitive ratio (i.e., the ratio
of the performance of any offline algorithm that has knowledge
of all past and future packet arrivals to the performance of
the proposed online algorithm) that is asymptotically optimal
with respect to the number of nodes in the network. The
algorithm assumes no statistical information on packet arrivals
and can easily be incorporated into existing routing schemes
(e.g., proactive or on-demand methodologies) in a distributed
fashion.

The work in [132] proposes a distributed routing algorithm
to improve energy efficiency in solar-powered WSNs. Each
node maintains two tables: one table keeps current residual
energy, energy harvesting rate and energy density of itself;
the other table records those information of its neighbors. The
residual energy of a node is divided into different levels. For a
node i, its energy harvesting rate is the average EH harvesting
rate of its neighbors. Each time a node wants to send out
a packet to a target node, when it is selected as the next-
hop node, it selects the node with the largest energy density

value from the nodes which have the highest energy levels. To
avoid the case of ring, a node can only transmit data to those
who are closer to the destination node. Comparing the routing
algorithms which greedily choose the node with the highest
energy harvesting rate, the strength of this algorithms is that
a node with higher EH density is likely to choose a neighbor
with high energy harvesting rate to be the next relay node.

2) Maximizing Throughput: The work in [133] jointly
considers energy allocation and routing in BF-WSNs with
the optimization goal of maximizing throughput over a finite-
horizon time period. The problem is formulated as a convex
optimization problem. A three-step approach is designed. First,
a simple network is studied where there is only one node
and its energy harvesting rate for the entire time period is
known in advance. An energy allocation scheme is proposed
and has been proven to be optimal. Then the assumption is
relaxed where the future replenishment profile is known and
an online algorithm is proposed for the one node case. An
approximate algorithm is proposed based on the estimated

EH rate, and the ratio bound is
(1− β1)

(1 + β2)
where β1 and β2

are two constants that describe the inaccuracy of estimation.
Specifically, let r̂(t) be the estimated value of the real EH
rate whose lower bound is r(t) and upper bound is r̄(t). β1

and β2 satisfy r(t) = (1 − β1)r̂(t) and r̄(t) = (1 + β2)r̂(t).
Finally, for the real energy allocation and routing problem in
BF-WSNs, a low- complexity distributed heuristic scheme is
proposed and it is proved to be optimal under homogeneous
energy harvesting profiles.

The work in [134] studies energy allocation and routing
to maximize the total system utility for multi-hop BF-WSNs,
without prior knowledge of the replenishment profile. The
system utility here is a strictly, concave, non-decreasing and
continuously differentiable function of the data transmission
rate in each time slot. To address this problem, an upper bound
for the utility performance of a BF-WSN is characterized by
constructing an infeasible scheme that outperforms the optimal
scheme. Then an asymptotically optimal low-complexity on-
line solution is proposed which is provably efficient using es-
timation of replenishment rate and supply-demand mismatch.
The performance gap between this online solution and the
infeasible solution for the upper bound diminishes as time
tends to be infinity, which implies that it is an asymptotically
optimal solution. Moreover, a distributed algorithm is proposed
to approximate the asymptotically optimal solution.

3) Maximizing Minimum Fair Rate Assignment: The works
in [137] presents a comprehensive algorithmic study of the
max-min fair rate assignment and routing problems in energy
harvesting networks with predictable energy profile. It is
assumed that the harvested energy is known for each node
over a finite time horizon. For a routing that is provided as
input, the authors design an algorithm that solves the max-min
fair rate assignment problem. The algorithm runs in O(nmT 2)
time, where n is the number of energy-harvesting nodes, m
is the number of edges in the routing graph, and T is the
time horizon. Then the problem is to find a reasonable routing
of the specified type, where routing is good if it provides
a lexicographically maximum rate assignment out of all the
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Optimization Objective Centralized or Distributed Energy Harvesting Process
[131] Energy Efficiency Centralized Not specified, but the energy arrivals are known in advance
[132] Energy Efficiency Distributed Solar-Powered
[133] Maximizing the throughput over a

finite-horizon time period
One centralized, one distributed ap-
proximate and one heuristic distributed

For the centralized algorithm, the energy replenishment is
known in advance; for the distributed approximate algorithm,
the energy replenishment is predictable; for the distributed
heuristic, the energy replenishment is not known in advance

[134] Maximizing the throughput One online and one distributed No prior knowledge of the replenishment profile
[135] Energy Efficiency and Reliability Distributed No prior knowledge of the replenishment profile
[136] Latency Centralized Not specified, but the energy arrivals are known in advances

TABLE III: Comparison of the existing routing methods

feasible routing solutions of the same type. Specifically, three
types of routing are considered: Routing Tree: the simplest
form of routing in which every node sends all the data it
collects and receives to a single neighbouring (parent) node.
Unsplittable Routing: a single-path routing in which every
node sends all of its sensed data over a single path to the sink
(a routing tree is a special case of the unsplittable routing,
in which all the paths incoming into node i outgo via the
same edge). Fractional Routing: a multipath routing in which
each node can split its data over multiple paths to the sink
(unsplittable routing is a special case of fractional routing
in which every node has one path to the sink). It is the
most general routing that subsumes both routing trees and
unsplittable routings, and therefore provides the best sensing
rates. All of these routing types are studied in Time-invariable
and Time-variable settings. A routing is time-invariable if
every node uses the same (set of) path(s) in each time slot
to send its data to the sink. If the paths change over time,
the routing is time-variable. It is shown that a max-min fair
routing tree is NP-hard to approximate within log(n) and that a
max-min fair unsplittable routing is NP-hard to find regardless
of whether the routing is time variable or not. Relaxing
the requirement of the lexicographically maximum rates, a
polynomial algorithm is designed that determines a time-
invariable unsplittable routing that maximizes the minimum
rate assigned to any node in any time slot. For the max-min
fair time-variable fractional routing, it is demonstrated that
verifying whether a given rate assignment is feasible is at least
as hard as solving a feasible 2-commodity flow. That implies
it is unlikely that we can determine a max-min fair fractional
routing without the use of linear programming (LP). To combat
the high running time induced by LP, a fully polynomial-time
approximation scheme (FPTAS) is developed. It is also shown
that in the special case when the fractional routing is restricted
to be time-invariable with rates that are constant over time, the
max-min fair routing can be determined in polynomial time
with a combinatorial algorithm.

In BF-WSNs, the availability of the node for transmission is
hard to determine due to the unpredictable supply of harvested
energy. Therefore, it is difficult for a node to determine the
operating state of neighbouring nodes. Motivated by this, two
probabilistic routing protocols are proposed in [135], called
Probabilistic ReTransmission (PRT) and PRT with packet Col-
lision Consideration (PRT-CC), to achieve high efficiency and
reliability in data collection in the presence of unsteady power
supplied by energy harvesting. Besides, acknowledgements
(ACKs) are employed to provide another means to detect
packet loss.

4) Others: The work in [138] presents an opportunistic
routing and data dissemination protocol for BF-WSNs based
on cross-layer constructs that allow cross-layer synchroniza-
tion and coordination between the routing protocol and the
application layer services. The work in [136] considers end-
to-end delay as a metric of network-wide QoS in solar-
powered WSNs. The authors suggest a low-latency data de-
livery scheme, which considers harvested energy, deployed
location and duty-cycle of neighboring nodes. The scope of
the above works is limited to data delivery for delivery-centric
WSNs. In many scenarios where sensor nodes are deployed in
remote areas, there is limited connectivity to the outside world,
thus sensory data have to be stored in the network until the next
upload opportunity (e.g., a mobile base station appears). The
work in [139] investigates how to enhance storage reliability
in storage-centric WSNs where sensory data have to be stored
in the network for a long time until next upload opportunity
appears. In this work, a storage service, called SolarStore,
is developed for solar-powered storage-centric WSNs. The
service is novel in its mechanisms for improving the amount
of data retrieved from the network in the face of energy
constraints and node failures. Maximizing retrievable data
in the face of node failures requires implementing reliable
storage, where reliability is achieved using redundancy. Since
achieving redundancy takes energy, the energy constraints im-
ply that the redundancy level should be dynamically adaptive
depending on the available energy. Hence, a main contribution
of SolarStore lies in its energy-adaptive and storage-reliable
mechanism used to maximize retrievable data.

C. Broadcast Scheduling

The works proposed for broadcast scheduling in BF-WSNs
can be grouped into two categories according to network
topology, i.e., star-topology and multi-hop topology. Table IV
summarizes the different broadcast scheduling methods.

1) Star Topology: The work in [152] considers reliable
broadcast in BF-WSNs with a star topology, where all battery-
free sensor nodes can directly contact with the base station.
The employed energy harvesting model is the Bernoulli model,
where a node l can harvest a unit of energy in each slot
with probability ρl. The forward error correlation technique is
applied to guarantee transmission reliability, where N original
packets are encoded into N + K packets by erasing coding
and the receivers can reconstruct the original N packets if
it receives at least N out of these N + K encoded packets.
To deal with energy deficiency of battery-free sensor nodes,
an energy-aware reception scheme is proposed in this work,
where a node can be a receiver only if its stored energy is
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Optimization Objective Multicast or Broadcast Energy Harvesting Process
[140] [141] Minimize latency Broadcast Gaussian distribution
[142]–[146] Minimize latency Broadcast Not specified, but the energy arrivals are known in advance
[147] Minimize latency Broadcast Bernoulli process
[148], [149] Minimize latency Multicast Constant harvesting rate
[150] Maximize throughput Broadcast Not specified, but the energy arrivals are known in advance
[151] Maximize throughput Multicast Stationary and ergodic random process
[152] Trade-off between reality and throughput Broadcast Bernoulli process
[153] Trade-off between reality and throughput Broadcast Stationary and ergodic process

TABLE IV: Comparison of the existing broadcast scheduling methods

larger than a threshold B. The trade-off between reliability and
throughput is analyzed. Two broadcast policies with different
optimization objectives are proposed, i.e., the reliable-first
policy and the throughput-first policy.

The work in [153] is an extension of the work in [152]. Be-
sides the Bernoulli model applied in [152], this work employs
another energy harvesting model, where the energy harvesting
process follows a stationary and ergodic process with mean
ρ mJ/slot. Similar to the work in [152], this work applies the
forward error correlation technique to enhance transmission
reliability, and applies the energy-aware reception scheme
to avoid interrupted packet receptions caused by exhausted
energy. In addition, an early termination scheme is proposed
to enhance energy-efficiency broadcast, where a node stops
receiving packets in a time block if it has received enough
packets to decode the original packets. Besides reliability and
throughput, this work considers energy efficiency to measure
the performance of broadcast scheduling policies, which is
defined as the expected energy consumption for receiving
a packet. Three broadcast policies with different optimiza-
tion objectives are proposed, i.e., the reliable-first policy, the
throughput-first policy and the eclectic policy.

The works in [140] and [141] investigate the broadcast
scheduling problem for solar energy based BF-WSNs with
a star topology, where all the battery-free sensor nodes are
located within the communication range of the base station. It
assumes that the energy arrivals and energy consumption of a
node follow the Gaussian distribution. Besides, it assumes that
the base station has full knowledge about the radio duty cycle
and the energy arrivals of each node. Then, the Hidden Markov
model for the state (ON/OFF) of each node is built by the base
station. Based on the Hidden Markov models, the base station
applies the set selection algorithm to derive the broadcast
time slots. Finally, the Baum-Welch Estimation Maximization
learning algorithm is used to adjust the parameters of the
Hidden Markov models to increase the likelihood of achieving
the minimum latency.

The work in [150] investigates broadcast scheduling from
a battery-free transmitter to its one-hop receivers through a
multi-input multi-output (MIMO) broadcast channel, where
both the transmitter and the receivers have multiple anten-
nas. Different from other works, it considers the non-ideal
circuit power consumption of the transmitter, e.g. the AD/DA
converter and signal processor. For the time-invariant channel
and the time-varying channel, the authors proposed an optimal
broadcast scheduling policy to maximize the weighted sum
throughput, respectively. However, these policies are based on
the assumption that the energy arrivals are known in advance,
including the time and the amount of energy arrivals.

The works in [142] [143] [144] [147] consider the broadcast
scheduling policy for a battery-free sensor node to its one-
hop receivers over an additive white Gaussian noise broad-
cast channel. The work in [144] proposes an optimal offline
scheduling policy for minimizing the total transmission time
of the broadcast from a battery-free sensor node to two
receivers in a time window. The authors proposed the DuOpt
algorithm which starts with a feasible broadcast schedule and
reduces the total transmission time iteratively. They proved
the optimality of the DuOpt algorithm under the condition
that all data destined to the weak receiver in the time window
arrive at the beginning of the time window. However, the
proposed algorithms are based on the assumptions that data
arrival and energy harvest instants and amounts are known in
advance, and the energy capacity and data capacity are infinite.
The work in [142] investigates the transmission completion
time minimization scheduling problem for the broadcast from
a battery-free sensor node to its M receivers. The authors
first investigated its dual problem which is the throughput
maximization problem with a given deadline constraint. The
authors proposed an iterative algorithm to generate the offline
broadcast scheduling policy minimizing the transmission com-
pletion time of a battery-free sensor node, which optimizes
the transmit powers and transmission rates of the battery-
free sensor node. However, the proposed broadcast scheduling
policy is an offline policy and is based on the assumption that
the energy arrival instances of the battery-free sensor node
are known in advance. The work in [143] considers the same
problem as the one in [142], but it considers an additional
constraint where the energy storage capacity of a battery-
free sensor node is finite. The work in [147] extends the
offline broadcast setting of the works in [143] and [142] to the
case of online broadcast. It first considers a special Bernoulli
process to formulate the energy arrivals of a battery-free sensor
node, where each energy arrival is either zero or its energy
capacity. An exactly optimal online power scheduling strategy
is proposed for this special energy arrival process. Then,
it considers general independent and identically distributed
(i.i.d.) energy arrivals, and proposes a sub-optimum strategy
coined fractional power constant cut-off policy.

2) Multi-hop Topology: The work in [145] is the first one
to consider the broadcast scheduling problem in multi-hop
BF-WSNs. In this work, all the nodes are battery-free, i.e.,
surviving through harvesting energy from other energy sources
in ambient environment instead of batteries. It proposes three
approximation algorithms for the minimum latency broadcast
scheduling problem in BF-WSNs. The latency bound of the
broadcast schedules generated by these algorithms are an-
alyzed and proved. Different from other works, the energy
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arrival process in this work is not specific. The work in [146]
further reduces the latency by generating the broadcast tree
without relying on predetermined structures, which is proved
to be very efficient for tree-structure data communication
[154], [155]. It proposes several efficient algorithms by com-
puting the collision-free broadcast schedule and generating
the broadcasting tree simultaneously. However, the proposed
algorithms are centralized and are based on the assumption
that the time consumption function for node v to harvest e
amount of energy from 0, Tv(e), is estimated in advance. The
work in [151] investigates joint power control, scheduling and
routing for multicast of data generated at sensor nodes to a
set of sink nodes in a BF-WSN. It assumes that the amount of
energy harvested by a node in a time slot follows a stationary
and ergodic random process. Three approaches are proposed to
maximize network throughput in a fair manner. However, the
proposed approaches only guarantee that the average power
consumed at each node is slightly less than its average energy
harvesting rate in a time slot. Thus, it is not suitable for the
scenario where the average energy harvesting rate of each
node in each time slot is unknown in advance. The work in
[148] investigates the minimum latency multicast scheduling
problem in multi-hop BF-WSNs, where all the nodes except
the sink node are powered by wireless energy transmitters
instead of batteries. It assumes that the energy capacity of each
node is infinite and the recharge rate of each node is a constant
within a period of time and is known in advance. To generate
a collision-free multicast schedule, the authors first proposed
a dynamic programming based centralized algorithm, then
they proposed an edge-based distributed algorithm. However,
these algorithms are heuristic and the multicast latency of
these algorithms is not bounded. They further studied the
problem of minimum latency many-to-many communication
scheduling in [149], where an energy-adaptive and bottleneck-
aware algorithm is proposed.

D. Data Collection Scheduling

The works for data collection scheduling in BF-WSNs can
be grouped into three categories according to network topol-
ogy, i.e., one-hop topology, network with a mobile sink node
and multi-hop topology. Table V summarizes the different data
collection scheduling methods.

1) One-hop Topology: The work in [158] considers data
collection in BF-WSNs with a star topology where battery-
free sensor nodes directly transmit their data to the base
station. In this work, the base station has a cache to store
the previously collected sensory data. The nodes only transmit
updates to the base station when the data accuracy of a query
is not guaranteed, i.e., the stored sensory data in the base
station exceed an error margin. They assumed that there is an
ideal slot based harvested energy prediction algorithm in each
harvesting period, which can predict the amount of energy
harvested by a node in each time slot. First, the authors
proposed an offline algorithm to solve a linear optimization
problem, assigning energy budget to a node for each time
slot in a harvesting period. Then, the authors proposed an
online algorithm to keep track of the current harvesting rate

and battery status adjusting the error margin. To optimize the
peak Age of Information at network edge with directional
chargers, the authors in [159], [160] studied the first joint
scheduling problem of data transmission and energy replenish-
ment at wireless-powered network edge. Several approximate
scheduling algorithms are proposed by considering charging
and transmitting simultaneously. However, these works only
considers the energy constraints of battery-free sensor nodes
in data collection but ignores the communication interference
among different sensor nodes.

The work in [157] considers data collection from micro-
powered wireless rechargeable embedded devices to a receiver
(also the charger), e.g., radio frequency identification (RFID)
tags and RFID readers. According to the non-linear harvesting
rate of each device, a packet scheduling and transmission
protocol is proposed with two kinds of predictable delay
bounds, per-packet collection delay and total collection delay,
for transmitting packets of all devices. The proposed protocol
is motivated by the classical uniprocessor real-time sporadic
task scheduling problem.

The work in [156] investigates the data collection schedul-
ing problem in mobile BF-WSNs. It considers the monitoring
scenario where all the nodes are mobile and the sink node
directly collects data from the nodes in one hop. The opti-
mization objective of this problem is to maximize the number
of data packets received by the sink node in one data collection
period, guaranteeing fairness for all the nodes. Since this
problem can be reduced to a typical 0-1 multiple knapsack
problem, it is NP-complete. Employing Hello packets and
ACK packets, the authors proposed a heuristic algorithm to
schedule nodes’ transmissions based on energy and fairness
constraints. However, the lower bound performance of the data
collection schedules achieved by the proposed algorithm is not
provided.

2) Networks with Mobile Sinks: To achieve high-rate data
collection in BF-WSNs, mobile data gathering emerges which
can effectively alleviate non-uniformity of energy consumption
among battery-free sensor nodes.

The work in [162] considers delay-tolerant data collection
in a BF-WSN with a mobile sink. It tries to find an optimal
close trajectory and sojourn time scheduling for the mobile
sink to maximize network throughput subject to a specified
tolerant delay constraint, which was proved to be NP hard.
It assumes that the potential sojourn locations for the mobile
sink are fixed and known in advance. Besides, it assumes that
the amount of energy harvested in a future time period is
predictable based on the source type and harvesting history. An
iteration-based heuristic algorithm is proposed for the through-
put maximization problem. However, this work ignores the
interference among simultaneous transmissions from different
nodes to the mobile sink.

Simultaneous transmissions from different nodes to a mo-
bile sink is considered in [163], which investigates the data
collection maximization problem in a BF-WSN with a mobile
sink. Different from other works, the mobile sink in this work
periodically travels along a path at a constant speed without
stops to collect data from one-hop nodes. This problem is
proved to be NP-hard by reducing it to a well known NP-
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Topology Static or Mobile Sink Optimization Objective
[156] One-hop Networks Static Sink Maximize data collection
[157] One-hop Networks Static Sink Minimize latency
[158]–[160] One-hop Networks Static Sink Maximize data accuracy
[161] [162] One-hop Networks Mobile Sink Maximize throughput
[163] One-hop Networks Mobile Sink Maximize data collection
[164]–[167] One-hop Networks Mobile Sink Maximize network utility
[135] Multi-hop Networks Static Sink Maximize delivery ratio in probabilistic data collection
[168] Multi-hop Networks Static Sink Maximize quality
[169] Multi-hop Networks Static Sink Maximize network utility
[170], [171] Multi-hop Networks Static Sink Minimize latency

TABLE V: Comparison of the existing data collection scheduling methods

complete problem, the generalized assignment problem. The
authors first proposed an offline approximation algorithm with
a provable approximation ratio for the problem based on
the combinatorial property of the problem, assuming that the
harvested energy of each sensor node is known in advance
and link communications in the network are reliable. Then,
the authors proposed a scalable online distributed algorithm
for the problem without the above assumptions. In this work,
the online distributed algorithm is implemented through Probe
messages broadcasting by the mobile sink.

The work in [161] also investigates the data collection
throughput maximization problem in a BF-WSN with a mobile
sink. Similar to the work in [163], the mobile sink in this
work has fixed-mobility pattern and moves along a direct path.
However, the transmission range of each node in this work
is variable rather than fixed. The data collection throughput
maximization problem is formulated as an integer linear pro-
gramming model. This problem is proved to be NP-hard by the
reduction from a special case of the generalized assignment
problem, which is an NP-hard problem. To cope with the NP-
hardness of the problem, time is divided into intervals, where
each interval consists of two consecutive time slots. Based
on interval partitioning, the authors proposed a scheduling
algorithm to improve data collection throughput.

Some works consider the joint of mobile energy replen-
ishment and data gathering, where a mobile sink directly
provides energy to nodes through wireless power transfer and
collects data from nodes [164]–[166]. In this scenario, energy
replenishment of nodes no longer suffers from environmental
variations.

The work in [164] investigates the optimal data gathering
scheduling problem to maximize network utility. Based on the
battery energy status of each node, the authors first proposed
an anchor point selection algorithm through binary search and
an approximate solution of the traveling salesman problem to
generate a data gathering tour for the mobile sink. Then, they
investigated the optimal data gathering scheduling problem
to maximize network utility, which is defined as the sum
of all the nodes’ utility functions. The utility function of
node i is twice-differentiable, increasing and strictly concave
with respect to the total amount of data gathered from node
i in a time interval. The optimal data gathering scheduling
includes the optimal data rate of each node, the optimal link
transmission scheduling based on the interference model, and
the optimal routing for data gathering. The authors applied the
proximal optimization algorithm and the dual decomposition
based subgradient method to solve the problem in a distributed

manner. The work in [165] is an extension of the work in
[164]. The work considers two tours in anchor point selection,
i.e., data gathering tour and recharging tour. In addition, this
work considers a special network with regular topology and
proposes a simplified solution with lower complexity for it,
exploiting the symmetry of regular topology. However, the au-
thors ignored the time consumption for energy replenishment.

The work in [166] and [167] also investigate the optimal
data gathering scheduling problem to maximize network util-
ity. However, the works in [164] and [165] assume that only
data transmission consumes energy and the recharging rate of
each battery-free sensor node is constant. Additional consider-
ations for the energy consumption of data reception and sens-
ing are provided in these works. Besides, the recharging rate
of a node is time-varying. They apply the same anchor point
selection method as in [164], which can generate a recharging
tour for the mobile sink. The optimal data gathering scheduling
problem with maximum network utility is formulated as a
non-convex optimization problem. The optimal data gathering
scheduling includes the optimal data generating and uploading
rates of each battery-free sensor node, the optimal scheduling
and routing paths of each battery-free sensor node, and the
optimal sojourn time for the mobile sink at each anchor point.
The authors reformulated the original problem as a convex
optimization problem through introducing auxiliary variables,
and separated it into a repeated two-level optimization prob-
lem by a hierarchical decomposition approach. A distributed
algorithm was proposed to solve the two-level optimization
problem. However, only a simple interference model is con-
sidered, i.e., the node-exclusive interference model, where any
two links are not allowed to share a common node to transmit
at the same time.

3) Multi-hop Topology: The work in [135] proposes some
probabilistic data collection protocols for multi-hop BF-
WSNs. The first probabilistic data collection protocol is
the Probabilistic ReTransmission (PRT) protocol, where each
sender determines its number of re-transmissions for a data
packet based on the calculated probability of the data packet
being successfully received by a neighbor. However, the PRT
protocol ignores the transmission collisions among different
nodes. To improve the PRT protocol, the authors proposed the
PRT with Collision Consideration (PRT-CC) protocol, which
considers the transmission collisions among different nodes.
In both protocols, the data packet reception probabilities are
exchanged among nodes through piggybacking them onto
regular data packets. Moreover, the use of acknowledgements
(ACKs) helps detect packet loss.
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The work in [168] investigates the weighted, fair data
rate allocation and flow routing problem for BF-WSNs. The
optimization objective is to maximize the monitoring quality
in a time interval, where a time interval consists of a fixed
number of consecutive time slots. It is assumed that at the
beginning of each time interval, the energy budget of each
node in the time interval is instantaneously available. Taking
into account the spatial data correlations among nodes, a
weight is assigned to the data rate of each node. Then, the
original weighted fair data rate allocation and flow routing
problem is reduced to the maximum weighted concurrent flow
problem, and an approximation algorithm is proposed with
a provable approximation ratio. Furthermore, the distributed
implementation of the proposed algorithm is provided.

The work in [169] investigates how to maximize data
gathering in BF-WSNs (in terms of network utility) jointly
optimizing the energy allocation, data sensing and data trans-
mission for each battery-free sensor node. The authors first
proposed a balance energy allocation algorithm for battery-
free sensor nodes based on the assumption that the harvested
energy of each node in each time slot of a period can be
estimated with high accuracy, where the length of a period
is one day (under solar energy harvesting process). Then,
they proposed a dual decomposition method and sub-gradient
method based algorithm to optimize the sensing rate and
routing control for each battery-free sensor node. However,
this algorithm ignores the signal interference among nodes,
assuming that it can be eliminated by the underlying MAC
layer.

The work in [170] investigates the minimum latency data
collection scheduling problem in BF-WSNs. It considers both
the protocol interference and the physical interference of data
transmission. Different from other works, this work focuses
on a more practical scenario, where the nodes can only
estimate its own energy harvesting rate in a short period of
time. Considering beacon messages containing energy status
and partial scheduling strategies, the authors first proposed
a distributed latency-efficient data collection scheduling algo-
rithm for line BF-WSNs, where all the nodes are deployed
in a line. Then, the authors proposed a distributed latency-
efficient data collection scheduling algorithm for general BF-
WSNs, where all the nodes are randomly deployed in a two-
dimensional monitoring space. Furthermore, the bound of the
data collection latency generated by the proposed algorithms
is proved. The work in [171] proposes a distributed data
collection framework, which uses an adaptive routing strategy.
It also enables battery-free nodes to select receivers depending
on their status and to provide more transmitting opportunities
to achieve high spatial parallelism.

E. Combining transmission and in-network processing

Most BF-WSN approaches focus on sensing and networking
algorithm design, and these approaches only consider the
energy consumed by sensors and wireless transceivers for
sensing and data transmission respectively. But in-network
processing (e.g. data aggregation/fusion/compression) is also
widely employed in real systems. The work in [172] jointly

optimizes sensing (rate control), networking (routing, schedul-
ing, and data forwarding), and in-network data processing
for highly dynamic BF-WSNs. The object is to maximize
aggregated network utility while guaranteeing sustainable net-
work operation for networks with arbitrary network topology
and dynamics. The authors proposed a novel approach called
shadow sink to map data processing to virtual data forwarding
operations, and to seamlessly combine data processing and
wireless networking. As a result, the problem can be seen as
a novel networking problem. They developed a lightweight
online algorithm called RWE. Through rigorous theoretical
analysis, they proved that RWE achieves asymptotical op-
timality, bounded data queue size, and sustainable network
operation. Real-world experiments have been conducted to
show that RWE can recycle more than 90% wasted energy
caused by battery overflow, and achieve around 300% network
utility gain in practical BF-WSNs.

1) Aggregation: The work in [173] proposes an energy-
aware data aggregation scheme for BF-WSNs. In this scheme,
a node periodically estimates its remaining energy for the next
round at the beginning of the round. Then it selects one of
the following three modes according to its estimated residual
energy:

1) Normal mode: If a node’s estimated residual energy is
insufficient for sending out all stored data, it does not send
any data and only receives and aggregates data received
from other nodes and its own data.

2) Transmission mode: If a node’s estimated residual energy
is more than the battery capacity, it transmits its aggre-
gated data using extra energy.

3) Energy-saving mode: If a node’s battery will be ex-
hausted, it transmits its aggregated data and turns to an
energy-saving mode. In this mode, the node turns off
its radio which is similar to a sleep state, and it does
not communicate with other nodes. As a result, it is
eliminated from routing because it cannot receive any
control packets.

In case the amount of aggregated data of a node in normal
mode exceeds the limit of its storage, the node transmits the
data regardless of its residual energy. Conversely, if a node in
energy-saving mode aggregates the excessive data, the extra
data can be discarded.

Minimum Latency Aggregation Scheduling (MLAS) is an-
other important problem for BF-WSNs. The work in [174],
[175] studies the MLAS problem in BF-WSNs and three
centralized algorithms are proposed where the BF-nodes are
scheduled in an adaptive way according to their current energy
conditions. However, centralized algorithms are not suitable
for WSNs due to high energy consumption and large time
complexity in the scheduling process. Moreover, the latency
of the algorithms is in proportion to the maximum number of
time slots needed for a node to get recharged to receive or
transmit a packet. In other words, the latency is determined
by the node with the lowest recharge rate, which can result in
unacceptable latency. Aggregating data from all the nodes in
a whole network is the cause of large time complexity here.
However, in practical applications, there are usually multiple
nodes being deployed to monitor a target area for higher
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data precision. It is not necessary to aggregate data from
all the nodes in a whole network in the applications with
relaxed requirements on precision. To address this, the work in
[176] generalizes the MLAS problem to the MLAS problem
with q coverage requirement in BF-WSNs (q-BFMLAS) and
proves it to be NP-Hard. The first distributed energy-adaptive
aggregation scheduling algorithm with coverage guarantee for
BF-WSNs is proposed in this work. The works in [177] try to
guarantee the covered nodes are evenly distributed in the whole
network to further improve the aggregation accuracy. Several
efficient aggregation scheduling algorithms are proposed with-
out relying on predetermined structures for aggregation tree
construction [178], [179]. Additionally, the MLAS problem
when there are multiple aggregation queries is studied in
[180]. In the proposed algorithm, a node selection algorithm
is proposed to control the number of nodes participating in the
aggregation process and connect the target nodes.

IV. DATA ACQUISITION

Different from data collection which aims to transmit sen-
sory data to the network sink, data acquisition investigates
how to obtain enough sensory data from the physical world.
Therefore, establishing a complete coverage for the monitored
region is rather important in data acquisition.

There are two key methods to acquire data from the mon-
itored region. The first method is to use the sensor nodes to
form a cover to collect enough sensory data, and the second
method is sensor-less sensing which aims to use the Radio-
based signals to collect enough sensory data from the physical
world. In the following sections, we first introduce the sensor
based data coverage methods, and then we briefly introduce
the sensor-less sensing techniques.

A. Coverage Methods

A coverage is a set of working sensor nodes that can monitor
the environment at a certain time. The coverage quality indi-
cates how well the interested region is being monitored by the
network. When designing a coverage method, the following
aspects need to be considered, coverage type, objective of the
coverage and type of energy supply of a network. Table VI
illustrates the comparison of different coverage methods, and
the details of these works are summarized as follows. Based
on the coverage type, the coverage methods can be divided
into two kinds, full coverage and partial coverage.

1) Full Coverage: In [181], [182], the authors considered
the Maximum Lifetime Coverage problem in BF-WSNs. The
goal is to maximize network lifetime and ensure all the
targets are monitored by at least one sensor node during
the network lifetime. The authors proved that this problem
is NP-Hard. Two approximation algorithms are proposed to
solve the problem. The first algorithm (LP-MLCEH) is a
linear programming based algorithm in which the problem
is formulated as a linear programming problem. The linear
programming problem is solved through binary search. The
second algorithm (MUA) is a greedy algorithm which aims
to minimize energy wastage of sensor nodes due to lost
recharging opportunities. In this algorithm, the node with the

maximum residual energy is selected to work at each time
slot. The experimental results show that comparing with the
MUA algorithm, the LP-MLCEH algorithm can obtain longer
network lifetime but is time-consuming.

The authors in [183] studied the Distributed Maximum Life-
time Coverage with Energy Harvesting (DMLC-EH) problem.
The problem aims to maximize network lifetime of a BF-WSN
in a distributed manner. In this work, the authors proposed the
off-duty rule. The rule implies that if all the targets within the
sensing range of node i have been covered by its neighbors,
then i can turn itself off without reducing the overall target
coverage. Otherwise, node i needs to be active. A distributed
scheduling algorithm was proposed based on the off-duty rule.

The work in [186] studies coverage and connectivity of
BF-WSNs. The authors aimed to construct a cover in each
time slot to maximize coverage quality. A cover is a set
of working sensor nodes that can communicate with each
other. The coverage quality of a target o is measured by
the number of time slots that o can be covered and the
number of sensors that can monitor o in a certain time. It
is proved that maximizing coverage quality in BF-WSNs is
NP-Hard. A heuristic algorithm was proposed to solve the
problem. The algorithm uses a forest to predict the working
status and connectivity of sensor nodes. Based on the forest,
the algorithm greedily selects sensor nodes to work until the
monitored duration ends.

The authors in [187] investigated the coverage problem in a
new type of BF-WSNs. There are two types of sensor nodes in
such networks, non-harvesting nodes and harvesting enabled
nodes. Non-harvesting nodes cannot harvest energy and are in
charge of sensing and acquiring data from the environment.
Harvesting enabled nodes can harvest energy and are adopted
as relay nodes to transmit data. The problem is how to place
the minimum number of harvesting enabled nodes to cover all
non-harvesting nodes and guarantee successful data transmis-
sion. This problem is proved to be NP-Hard, and it is solved
by adopting connected dominating sets. The algorithm has two
major steps. First, a minimal dominating set is constructed in
the graph deduced by all the non-harvesting nodes. Second, the
harvesting enabled nodes are placed next to the non-harvesting
nodes that are in the connected dominating set. The authors
also formulated the problem as an integer linear program and
proved that the lower bound of this problem is the solution of
the program.

The coverage problem in a BF-WSN with a mobile charger
is studied in [188]. The authors aimed to schedule a mobile
charger to charge sensor nodes and maintain full coverage of
the network. The monitoring duration is divided into multiple
rounds and the scheduling strategy has three steps. First,
the sensor nodes are weighted based on the residual energy.
Second, the sensor nodes are classified into three categories,
green, yellow, and red, based on their weights. Third, a
charging tour is determined based on different classes of the
sensor nodes. The mobile charger first recharges the sensors
in the red class since they are going to exhaust their energy.
A Hamiltonian cycle algorithm is adopted to calculate the
charging tour for the red class sensors. The yellow class has
the second priority and it means that the sensors can live for
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Coverage Type Objective Energy Supply
[181]–[185] full coverage maximize network lifetime natural energy
[186] full coverage maximize coverage quality solar energy
[187] cover sensor nodes minimum-cost deployment natural energy
[188] full coverage optimize charging tour mobile charger
[189]–[191] full coverage /energy neutral minimum-cost deployment natural energy
[192], [193] k-coverage optimize the charging tour mobile charger
[194] full coverage minimum-cost deployment natural energy
[195], [196] full coverage minimize energy consumption RF energy
[197] partial coverage maximize coverage quality solar energy
[198], [199] partial coverage maximize coverage rate natural energy
[200] energy-data dual coverage maximize coverage rate/minimum-cost deployment natural energy and RF energy

TABLE VI: Comparison of the existing coverage methods

more than a round. The charging tour for the yellow sensors
is similar to that for the red class. The only difference is that
some sensors can be ignored in the charging cycle such that
the charging tour is short or the mobile charger can recharge
more sensors. Green sensors have enough energy and do not
need to be charged.

In [189] and [190], the authors considered maintaining
“energy neutral” coverage and connectivity of a network by
delicately placing energy harvesting sensor nodes. The energy
neutral of a sensor node means the energy consumed to
monitor targets is less than its harvested energy. Specifically,
the problem investigated in these papers aims to place the
minimum number of sensor nodes such that 1) the placement
can meet the coverage requirement of each target, 2) each node
has a path to the sink, and 3) every node has energy neutral
operations. The authors proved that this problem is NP-Hard.

In [189], the targets require perpetual coverage and three
algorithms are proposed. The first algorithm is the GMILP
algorithm. In the first step, the problem is formulated as a
mix integer linear programming (MILP). Then the maximum
weighted set cover (MWSC) algorithm is invoked to reduce
the search space of MILP. Finally, MILP is solved based on the
search space obtained in the last step. The second algorithm,
DirectSearch, and the third algorithm, GreedySearch, rely on
straight lines from the targets to the sink. In DirectSearch,
sensor nodes are only deployed on the points that cover the
lines connecting the targets to the sink. On the other hand,
GreedySearch considers deploying nodes at other positions to
further optimize the performance of the algorithm. It has three
steps. First it determines a set of points to place some nodes
to monitor the targets. Second, it determines a set of points
to deploy some nodes to make the network connected. Third,
it computes the number of nodes at each position to maintain
the energy neutral operations of the nodes. Witnessed by the
simulation results, DirectSearch and GreedySearch are more
effective than GMILP while GMILP can obtain better results.

In [190], each target requires a fixed sampling rate, and
the monitoring sensor should have enough energy to keep the
sampling rate. The authors also formulated the problem as an
integer programming problem and adopted the relaxation and
rounding method to solve the problem.

Different from [189], [190] in which the authors have
assumed that the harvested energy of each sensor node is a
constant, the authors in [191] used the hidden Markov model
to predict harvested energy. The motivation of this work is to
schedule energy harvesting sensor nodes to work to maximize
the number of time slots so that all the targets are covered.

Based on the energy prediction model, this problem is solved
by a Monte Carlo sampling method.

The authors in [192], [193] investigated the k-coverage
problem in a BF-WSN with a mobile charger. k-coverage
requires that each target should be monitored by at least k
sensors at each time. This work aims to schedule the mobile
charger to recharge sensor nodes and maintain the k-coverage
of all the targets. To do so, the sensor nodes are clustered at
first. The objective of clustering is to balance the workloads
and energy consumption of nodes so that a single charging
round of the mobile charger can cover more energy recharging
requests and reduce the moving cost of the charger. After
the clustering, a shortest Hamilton path is calculated through
clusters. Following the path, the mobile charger recharges
sensor nodes.

The authors in [194] studied the target coverage problem
in BF-WSNs with directional sensor nodes. A directional
sensor node can monitor the targets in a certain direction.
The motivation of this work is to study the minimum-cost
deployment of sensor nodes for perpetual target coverage.
To do so, the deployment should 1) satisfy the coverage
requirement of each target, 2) find the communication route
from each sensor node to the sink, and 3) achieve the energy
neutral operation [189] of each sensor node. The authors
proved the NP-Hardness of the problem and proposed three
approximation algorithms to solve it. The first algorithm is
the linear program-based heuristic (LPBH) algorithm. LPBH
modifies the problem into an integer programming problem at
first, and then transforms it to a linear programming problem
by removing the integrality constrains. In the next step, LPBH
solves the linear programming and transforms its solution into
a feasible solution of the investigated problem. Obviously,
LPBH is time-consuming. The authors also proposed two
effective heuristic algorithms, Two-Stage Heuristic (TSH) and
Sensing and Routing Integrated Greedy Heuristic (SRIGH).
TSH has two stages. The first stage deploys a minimum
number of sensor nodes to cover targets, and the second stage
places sensor nodes to connect them to the sink. In SRIGH,
a sensing node and its communication route to the sink are
determined at the same time. Here, the communication route
is determined by the shortest path algorithm. Based on the
experimental results, TSH is the most effective one. However,
the results obtained by LPBH and SRIGH are better.

The authors in [184], [185] investigated the coverage prob-
lem in a network with many non-chargeable sensor nodes
and a few energy harvesting sensor nodes. The purpose of
this kind of BF-WSNs is to use a little number of energy
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harvesting sensor nodes to further prolong network lifetime.
The authors defined a new standard of network lifetime based
on the concept connected dominating set. Constructing a
connected dominating set is a key method in wireless sensor
networks to maintain network coverage and connectivity. In
these two works, network lifetime is defined as the number
of working connected dominating sets. A working connected
dominating set in time slot t is a connected dominating set
of the network and the sensor nodes in it can work at t.
The motivation of these works is to construct the maximum
number of working connected dominating sets to maximize
network lifetime. The authors proved that this problem is NP-
Hard. Two approximation algorithms were proposed to solve
this problem. The first algorithm is a centralized one. It first
calculates the upper bound of the actual working time slots of
each sensor node. Then a new network is constructed based
on the calculated actual working time. Each node in the new
graph can work for only one time slot. Based on Theorem
3 in [184], the original problem is equal to constructing the
maximum number of disjoint connected dominating sets in
the new graph. Thus, in the last step, the algorithm adopts
an existing work [201] to construct the maximum number
of disjoint connected dominating sets in the new network.
The approximation ratio of this algorithm is ∆′

⌊ ∆′+1
β(c+1)

⌋−ϵ∆′|V |
,

where ∆′ is the minimum degree of the new network, c < 11,
β < 2 are two constants, and V is the set of sensor nodes. The
second algorithm is a distributed one which is more suitable
to large scale energy harvesting networks. The algorithm first
transforms the network into a weighted graph based on the real
working time of each sensor node and constructs a connected
dominating set in each time slot based on the following two
phases. In the first phase, the algorithm distributedly finds a set
of sensor nodes to be a dominating set. In the second phase,
the algorithm connects the nodes in the dominating set and
constructs the connected dominating set. Based on Theorem 6
in [185], the approximation ratio of the distributed algorithm
is equal to the minimum vertex cut of the weighted graph.

The works in [195], [196] investigate the coverage problem
in BF-WSNs powered by RF energy. The authors call such
a network as the “RF-based battery-free sensor network” in
which the sensors are modified passive RFID tags and are pow-
ered by the RFID Readers. The sensor nodes work in a passive
way which means a sensor node can sense and transmit if and
only if it has been powered by a RFID Reader. The RFID
Readers are equipped with directional antenna and rotate their
antenna to recharge sensor nodes and collect the sensory data
simultaneously. Rotation and recharging consume a Reader’s
energy. In order to save energy and maintain the coverage of
the sensory data, the Readers only collect the sensory data
from the sensor nodes that belong to the dominating set. The
problem is how to use the minimum energy to schedule Read-
ers to recharge and collect sensory data from the dominating
set in each time slot during the monitoring duration. The
authors proved that this problem is NP-Hard. A centralized
algorithm and a distributed algorithm are proposed to solve
this problem. The centralized algorithm aims to approximately
minimize the globe energy consumption by minimizing the

energy consumption in each time slot. To do so, the algorithm
greedily schedules the Readers in each time slot based on
the energy consumption at different rotation angles and the
newly dominated sensor nodes. The approximation ratio of
the centralized algorithm is ln(|VB |)(1 + erπ

ebδ
), where VB is

the set of sensor nodes, er and eb are the energy consumed
by rotation and recharging respectively. The major idea of
the distributed algorithm is similar to that of the centralized
algorithm. However, in the distributed situation, the Readers
can only schedule themselves based on local information.
Thus, the performance of the distributed algorithm is not as
good as that of the centralized algorithm. The authors in [195]
proved that the approximation ratio of the distributed algorithm
is ( (2π−R)er

δeb
+ 2π

R )(1+ erπ
ebδ

)ln(|VB |), where R is the radiation
angle of each Reader.

2) Partial Coverage: Different from the full coverage, the
partial coverage methods use the coverage ratio (or coverage
rate) to measure the coverage quality.

The authors in [197] investigated the coverage problem in
a battery-free WSN powered by solar energy. It is assumed
that the coverage quality is a submodular function over the
set of the sensors providing the service. Furthermore, it is
assumed that the recharging rate is stable. The coverage quality
maximizing problem in such networks is proved to be NP-
Hard. The authors proposed a greedy hill-climbing activation
scheduling scheme to maximize coverage quality. In each step,
the scheme schedules a node to a proper time slot to maximize
the incremental quality together with the previously scheduled
sensors. The authors proved that the achieved coverage quality
is at least 1

2 times of that achieved by the optimal schedule.
Instead of specifying the energy source to solar energy,

the authors in [198], [199] investigated BF-WSNs powered
by general ambient energy. Since ambient energy is always
weak and distributes unevenly, sensor nodes may not be able
to harvest enough energy to work in any time slot. This implies
that maintaining full coverage of the monitored targets all the
time is almost impossible. Therefore, in this work, coverage
quality is measured by the average coverage ratio. The problem
is how to schedule sensor nodes to work to maximize coverage
quality during the network lifetime. This problem is NP-
Hard. Based on Theorem 2 in [199], the problem has a
polynomial time solution if the network parameters satisfy
specific sufficient conditions. The work in [199] proposes
two centralized algorithms to solve the problem when the
sufficient conditions are not satisfied. The first algorithm is the
Disjoint Set Cycling (DS-C) algorithm. DS-C first constructs
k disjoint node sets to maximize the average coverage rate
where k is a variable related to the minimum recharging rate.
Then DS-C schedules these sets to work in cycle to cover
the monitored region (or targets). Obviously, DS-C is related
to the minimum recharging rate and it can predetermine the
schedule of sensor nodes in advance. This property implies
that DS-C is easy to be implemented but is not adaptive to
energy violation. Different from DS-C, the second algorithm
Adaptive Local Coverage Quality Maximization (ALCQM)
aims to maximize the coverage quality locally to maximize
the global coverage quality approximately. In each time slot,
ALCQM uses the Predicting Network to predict the working
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status of each sensor node in the next two time slots and
adopts a greedy strategy to schedule sensor nodes to maximize
coverage quality in these two time slots. The experimental
results show that ALCQM can obtain better coverage quality
than DS-C. However, ALCQM is time-consuming.

In [200], the authors further considered BF-WSNs powered
by both RF energy and ambient energy. RF energy is supplied
by Power Stations. The authors proposed the energy-data dual
coverage concept. Energy coverage means to deploy Power
Stations to supply stable energy to sensor nodes, and data
coverage means to schedule sensor nodes to cover the mon-
itored targets. The authors analyzed the relationship between
energy coverage and data coverage, and proposed two heuristic
algorithms to meet different user requirements.

B. Sensorless Sensing

Sensorless sensing is a hot topic in the recent years. For a
WiFi system with MIMO-OFDM, Channel State Information
(CSI) is a 3D matrix of complex values representing the
amplitude attenuation and phase shift of multi-path WiFi chan-
nels. Time series of CSI measurements capture how wireless
signals travel through surrounding objects and humans in
time, frequency, and spatial domains, so it can be used for
different wireless sensing applications [23]. In this scenario,
we can use WIFI “sense” the environment and objects without
sensors, so it is called sensorless sensing. The sensorless
sensing technique can be used in human behaviors detection
[202]–[205] and object movement monitoring [206]–[209].
A detailed survey of the sensorless sensing techniques is
presented in [23]. In this paper, we briefly introduce the
framework of sensorless sensing.

Sensorless sensing aims to extract information from CSI.
In a sensorless sensing system, the input is raw Radio-based
signal with the Channel State Information. Then the signal will
be processed through noise reduction, signal transformation
and signal extraction. Finally, the processed results will be
fed into modeling-based, learning-based, or hybrid algorithms
to obtain the results for different sensing requirements.

V. APPLICATIONS

In BF-WSNs, the rechargeable sensor nodes without bat-
teries which can be deployed in practically any area, do not
need to be replaced for a long time, and work under extreme
conditions, have enabled many new capabilities in the IoT.
Currently, BF-WSNs have been employed in many practical
applications, such as environmental sensing, object localiza-
tion, structural health monitoring, mobile health monitoring,
video streaming and electrical current sensing, industrial ap-
plications, etc. This section provides some examples of these
applications accordingly.

A. Environmental Sensing

Several battery-free sensing techniques have been developed
for environmental sensing, such as monitoring the ambient
environmental parameters (i.e., humidity, temperature, light

intensity, etc.) inside a building or in an outdoor environ-
ment (i.e., a forest), the health of the ecosystem, the emission
of carbon dioxide, etc. Some examples are shown below.

Indoor Air Quality Monitoring: The work in [210] pro-
poses a system with RF-powered wireless sensors for indoor
air quality monitoring, which can measure the concentration
of volatile organic compounds, ambient temperature, relative
humidity, and atmospheric pressure in a building. In the
proposed system, an ultra-low power sensor combined with
a radio frequency energy harvester is employed, which can
harvest the available RF energy from the reader within a
maximum distance of 250cm. In [211], the authors try to use
passive RFID tags as the battery-free temperature sensors. In
their design, the phenomenon that the impedance of an RFID
tag changes with temperature is used to sense the temperature.
In [212], a battery-free humidity sensor is designed with
reasonable sensitivity, reliability, and eco-friendly nature.

Forest Fire Monitoring: Forest fire is one of the most
dangerous disasters for the ecosystem, which may cause signif-
icant damage to natural resources and economic prosperity. To
detect forest fire at an early stage, the work in [213] proposes
a forest fire prediction scheme with rechargeable wireless
sensors. In the proposed system, it is stated that the recharge-
able wireless sensors own the following two superiorities for
forest fire monitoring: 1) A large number of low-cost sensors
can be deployed in a remote forest field to obtain accurate
environmental data (temperature and humidity); 2) Due to
the battery-free design, it can harvest energy from solar and
wireless power transfer technology to avoid replacing batteries,
which greatly reduces the maintenance cost (the monitored
area is usually in an untraversed region). The proposed system
can collect 24-hour weather data continuously to obtain the
status of forest environment accurately and the risk of forest
fire.

Insect Monitoring: In [214], an insect monitoring system
with batter-free sensors is presented. In the proposed system,
a small and lightweight digital telemetry system is designed
to record the moving insects, which includes an RF energy
harvesting circuit for battery-free operations. The circuit can
also communicate with the base station through backscattering.
It has a measured flight package mass of only 38mg, which
enables recording from insects in flight. The base station
includes a RF transmitter to transfer the power to the telemetry
circuit wirelessly, and a digital transceiver to collect the
sampled data from the telemetry circuit on the insects.

B. Object Localization

Object localization with battery-free devices has become a
new hot-spot recently. Many practical applications, including
indoor positioning, indoor navigation, object tracking, and
even gesture recognition, etc., are proposed.

Indoor Positioning: Indoor positioning is a basic and essen-
tial service for many IoT applications. A typical application is
called goods positioning in warehouse. The works in [215] in-
troduces an indoor positioning system with battery-free RFID
tags, which can obtain the 3-D positions of items in a indoor
environment. In the proposed system, the ultrasound detectors
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and accelerometers are used to estimate the tags’ position.
In [216], the authors investigate the underwater backscatter
localization system for the first time. They present a proof-
of-concept prototype and deploy it in the Charles River in
Boston. In their prototype, there is a backscatter node and a
PCB embedded with a microcontroller to handle the challenges
in underwater localization with acoustic backscattering, such
as extreme multipath of acoustic signals and slow speed of
sound. The battery-free indoor positioning system with visible
light is studied in [217]. In their design, the shadow of the
target is used to predict its position. The proposed system can
position the target when it senses a drop in the intensity of
ambient light caused by the presence of a shadow.

Indoor Navigation: Since the accuracy of a current GPS
system inside a building is not enough for indoor navigation,
a BF-WSN based indoor navigation system, which can work
for a long time without replacement and can be deployed in
anywhere, would be beneficial [218]. In [219], the authors
present a battery-free parking system with visible light. The
battery-free tags are instrumented on the vehicles and the
parking places to obtain the vehicle positions and status of
parking spaces in a low-cost manner. The authors also design
a lighting infrastructure to conduct data communication based
on the visible light backscatter communication. The authors
in [220], [221] try to obtain the accurate positions of the
rechargeable sensor nodes with the unique Time of Charge
(TOC) sequences when the charger stops at different point to
charge them.

Object Tracking: Recently, device-free object tracking
has become a promising solution for many local tracking
systems with non-cooperative objects which do not carry any
transceivers [222]. In [223], the authors propose a tracking
system with passive RFID tags, which try to detect the targets
moving inside an unconstrained indoor environment. In the
proposed system, they leverage the relationship between the
received signal strength indicator (RSSI) value and the moving
status of the object to estimate the target positions. To improve
the accuracy, a signal noise reduction method is used to
clean and normalize the original data, and then a particle
swarm optimization based algorithm is proposed to obtain its
initial position. A trajectory prediction method is also given
for continuous tracking. The system can achieve an accuracy
of 1m in an unconstrained indoor environment. In [224],
[225], the authors propose an intrusion detection system with
the commercial off-the-shelf RFID readers and tags. In their
design, the interference among passive RFID tags is leveraged
to detect moving objects. The proposed system has a low
positioning error of 0.75m in average, which is effective to
detect moving objects.

C. Mobile Health Monitoring

Wireless and battery-free sensors can also be employed to
support reliable and long-term health monitoring with minimal
intervention. Some examples are shown below.

Battery-free Body-Area Networks: The work in [226]
implements a prototype of a battery-free body-area sensor.
In their designed battery-free sensors, there is an energy

management module, a microcontroller chip, a small triple-
band rectenna, and a sensing and communication module. To
support continuous operation of the sensors, an electrically
small triple band rectenna is designed to harvest energy for
RF signals at GSM-900, UTMS-2100, and TD-LTE bands. In
[227], the authors try to power the wireless battery-free body-
area networks from a long distance. In their proposed system,
there is a cellphone-like power source and a passive relay
node which transfers energy from the power source to multiple
battery-free sensor nodes on the body. The star network
topology is leveraged to support continuous connection of
these sensor nodes and the sink station. In the design, the
wireless power transfer source can power up to 6 sensor nodes
from a distances at 60cm with a sample rate of 20Hz.

Wearable Bio-sensing: Wireless battery-free wearable bio-
sensors can enable noninvasive health monitoring, which has
gained an increasing attention from researchers. In [228], the
authors design a wireless wearable bio-sensing platform which
can harvest energy from body motions to support robust and
continuous bio-sensing. In their platform, a triboelectric nano-
generator with a flexible printed circuit board is designed as
the energy source to support bio-sensing and data transmission
via Bluetooth. In [229], the authors design a wearable tag to
monitor multiple physiological signals, which can also emit
an alarm when it detects an emergency signal of the patient.
The tag consists of a self-designed integrated circuit, an RF-
Powered antenna for energy harvesting, and several sensors
for bio-sensing. The total cost of the designed wearable tag is
less than 2 dollars.

Mobile Health Care: In [230], a hospital nurse calling
system is proposed with the RF-powered sensors. In their
system, each patient carries a wireless battery-free call device,
which is used for making requests and providing patient
positioning. For patient positioning, several reference nodes
are deployed in the hospital and the trilateration positioning
method is leveraged to estimate a patient’s position with the
received signal strength indicator values at the reference nodes.
Once a patient’s position is obtained, the nearest nurse will
get an alarm when an emergency occurs. In [231], the authors
design a wearable battery free sensor for falling detection,
which is one of the most serious medical concerns for elderly
patients. The designed sensors can not only harvest energy
from RF wave of an off-the-shelf reader but also transmit their
sampled data to the reader wirelessly. To improve the detection
accuracy, the authors combine the values of the accelerometer
with the received signal strength indicator values of wireless
signals for prediction. The proposed system can work in an
operating range of up to 2.5m.

D. Structural Health Monitoring

For structural health monitoring, i.e., monitoring the health
status of civil and mechanical structural infrastructures [232],
including the high-tall buildings, long suspension bridges,
railway and subway tunnels, etc., there have been many studies
taking BF-WSNs as a promising solution.

Bridge Health Monitoring: The work in [233] presents
a prototype of the battery-free and LoRa based sensor node
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to monitor the occurrence of ice on a large bridge. A LoRa
transceiver is leveraged in their design although it consumes
much more energy than other short-range wireless transmis-
sion techniques, such as Bluetooth. This is mainly due to it
enables the monitoring of a large bridge from a long distance.
To support the energy consumption of the batter-free sensor
nodes, a low cost electromagnetic vibration energy harvester
is designed, which is more cost effective, longer lasting, and
easily scalable to different level of power consumption. The
Halbach array of permanent magnets are employed in their
design to reduce the sizes of the designed energy harvester.
The harvested energy is stored in a supercapacitor, which
is used to support a ARM Cortex M0+ microcontroller and
the LoRa radio frequency module. In [234], two prototypes
of RF-powered sensing nodes are implemented, which are
powered by an RF energy source operating in the ISM
868MHz frequency band with the far-field wireless power
transfer technique.

Building Monitoring: The work in [235] presents a battery-
free sensor node with commercial off-the-shelf components
for building monitoring. In their proposed system, an indoor
battery-free sensor node which can support Bluetooth com-
munication is designed, including an ambient light energy
harvesting module. To maximize the lifetime of the designed
nodes under dynamic lighting conditions, a predictive algo-
rithm is proposed to achieve a trade-off between node-lifetime,
quality of service and light availability. In [236], a battery-
free sensor node with sensing and communication capabilities
is wirelessly powered by a dedicated radio frequency source
which can transfer energy at a long distance. A prototype of
such a sensor node is implemented, including a temperature
sensor and a relative humidity sensor, the communication
model which can enable LoRa WAN uplink wireless commu-
nication, and an energy harvesting model. It is shown that the
designed sensor node can achieve periodicity of measurement
and communication with the wireless power transfer source.

Structural Damage Localization: The work in [237] lever-
ages battery-free sensor nodes for damage localization and
quantification in gusset plates. Gusset plates are usually used
as as a critical component to connect different structural
members (i.e., diagonals, chords, and vertical members) in the
structural system (i.e., bridges and trusses). Because of the
corrosion, there may exist typical damages of gusset plates at
intersections of different members. In this work, the authors
design a prototype of battery-free sensor nodes for damage
localization and quantification in gusset plates. A network of
battery-free sensor nodes is deployed on the surface of the
plate. With the fusion of the sensing data from self-powered
sensor nodes in the network, they proposed a crack localization
and quantification method to detect the damage and measure
the crack size.

E. Industrial Applications
Some works try to employ the novel battery-free design in

the Industrial Internet of Things (IIoT) applications, such as
industrial monitoring and leakage detection.

Industrial Monitoring: The work in [238] introduces a
prototype of battery-free sensor for industrial monitoring with

a designed Ultra High Frequency (UHF) RFID integrated
circuit. The designed circuit can harvest and store energy from
RF signals based on a low cost CMOS. It also incorporates a
serial peripheral interface in order to communicate with two
commercial digital sensors, which can monitor temperature
and pressure. In [239], the authors design a battery-free goods
quantity monitoring system in a small warehouse, which act
as a link in the logistics process. For smart warehouse, it
needs to ensure the speed and accuracy of the data input in
each link of warehouse management. The proposed system is
aimed for counting the number of goods in each column in
the smart warehouse with a small number of RFID tags. The
correspondence between the quantity of goods and the radio
frequency signal is used to identify the quantity of goods with
the K-Nearest Neighbors (KNN) classification algorithm.

Leakage Detection: Leakage detection is an essential issue
for factories with numerous pipelines. In [240], the authors
propose a battery-free and low-cost system for liquid leakage
detection with backscattered signals. In their design, the com-
mercial off-the-shelf RFID tags are used. The intuition is that
the leaked liquid around tags will change the phase and the
RSSI values of the emissioned signals of tags, which then can
be used to detect the presence of liquid leakage. To make the
proposed system work functionally, the authors mainly focus
on the following two challenges : 1) how to detect the slight
signal variation which is changed by the leaked liquid; 2) how
to eliminate the multipath and interferences between different
tags. It is shown that the proposed system can achieve 90.2%
true positive rate while keeping the false positive rate is not
larger than 14.3%.

F. Image Capturing and Video Streaming
Although the RF-powered devices face great energy limita-

tions for performing arbitrarily complex sensing and compu-
tation, the energy-consuming sensing and computation tasks
in a battery-free design, such as battery-free image capturing
and video streaming, are also investigated recently.

Image Capturing: In [241], the authors design a passive
UHF RFID camera tag to support reliable image capturing and
transmission. The passive UHF RFID camera tag is designed
based on the wireless identification and sensing platform
and powered by an RFID reader. To utilize the harvested
energy efficiently, they leverage a charge-storage scheme to
support the operation of the image sensor, in which they try
to balance capacitance and leakage of the energy-harvesting
model to improve efficiency. They also proposed a data storage
and communication method to transmit the image data to
the RFID reader. Two practical applications, i.e., mechanical
gauge reading and surveillance, are implemented with the
designed tag. In [242], the authors further improve the battery-
free image capture tag. They propose a novel data storage
and bi-directional communication method to support reliable
image data transmission even under the scenario with packet
loss. The designed system also can support periodic updates on
the charging state of the tag before it has accumulated enough
energy for image capturing.

Video Streaming: Video streaming is an extremely energy-
consuming operation, which needs power-consuming hardware
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and computationally intensive video codec algorithms. This
makes it seemly impossible for battery-free implementation.
In [243], the authors present a novel architecture which can
support HD video streaming with a battery-free camera which
can transmit the video data to a nearby mobile device. In their
design, to remove the power-consuming hardware components
including ADCs and codecs, they proposed an ”analog” video
backscattering method to feed analog pixels from the photo-
diodes directly to the backscatter hardware. It is shown that
their system can achieves 60fps 720p video streaming with
a power of 321uW and 1080p HD video streaming with a
power of 806uW. The empirical results also show that their
system can support battery-free 30fps 1080p video streaming
at a distance up to 8 feet.

VI. CONCLUSION

In this survey, the existing algorithms for BF-WSNs are
summarized and analyzed where a BF-WSN is a solution to
address the energy limitation of conventional wireless sensor
networks. The algorithms are classified into three categories,
energy management, networking, and data acquisition. We
first introduce the existing works for energy replenishment
scheduling, including charger deployment, charger placement
and charger scheduling. Then we present the algorithms for
communication and networking, such as broadcasting, routing,
data collection and data aggregation. Furthermore, we summa-
rize the works in data acquisition, including sensorless sensing
and coverage. Finally, we introduce some specific applications
in BF-WSNs.
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